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Abstract. This paper presents a new 64-bit block cipher mCrypton
with three key size options (64 bits, 96 bits and 128 bits), specifically
designed for use in resource-constrained tiny devices, such as low-cost
RFID tags and sensors. It’s designed by following the overall architec-
ture of Crypton but with redesign and simplification of each compo-
nent function to enable much compact implementation in both hardware
and software. A simple hardware implementation of mCrypton is also
presented to demonstrate its suitability to our target applications. Our
prototype implementation based on the straightforward 1 cycle/round
architecture just requires about 3500 to 4100 gates for both encryp-
tion and decryption, and about 2400 to 3000 gates for encryption only
(under 0.13µm CMOS technology). The result shows that the hardware
complexity of mCrypton is quite well within an economic range of low-
cost RFID tags and sensors. A more compact implementation under
development promises that further size reduction around 30% could be
achievable using the 5 cycles/round architecture.

1 Background

The ubiquitous computing paradigm pursues true elimination of time and space
barriers by embedding wirelessly networked processors in everyday objects and
thereby making a variety of services available to users all the time everywhere.
The ubiquitous computing vision however could bring a great deal of security
risks due to the ubiquity of tiny interconnected devices embedded into everyday
environments [2, 11]. In particular, much research attention has been recently
paid to the security and privacy issues of RFID and sensor networks [4, 9].

Traditionally, block ciphers have been used as a basic security building block
for most resource-constrained applications, such as smart cards and security to-
kens. The same and even more compelling reasoning can apply to tiny ubiquitous
devices such as low-cost RFID tags and sensors. In such resource-constrained de-
vices it is undesirable or even impossible to implement multiple security primi-
tives for cost reason. So a compact, hardware- and software-efficient block cipher
could be the most promising candidate for security in such applications.

Design Constraints. Typical ubiquitous computing devices however impose
new constraints in block cipher design due to their size and shape [11]. First of
all, the chip area required for hardware implementation of a block cipher should
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be small enough not to much increase the cost of ubiquitous devices due to
the added security feature. For example, in the case of low-cost RFID tags, one
of the most resource-scarce ubiquitous computing devices, it is estimated that
security resources available to a 5 cent design may be limited to hundreds of
bits of storage, roughly 500-5,000 gates [12]. Note that low-cost RFID tags only
have a simple logic for data processing even without CPU, so the only way to
implement a crypto algorithm would be its hardware integration into tag chips.

Another and more critical issue in tiny ubiquitous devices is the limited
amount of power available. Only a small, finite amount of energy may be avail-
able through a miniature battery to the tiny processors embedded in ubiquitous
computing devices such as mote-class sensors. Even more cheap devices, such
as passive RFID tags, cannot be self-powered and thus should obtain energy
from larger communicating devices through electromagnetic coupling. This lim-
ited power availability places a bound on the total amount of computation such
devices can perform, rather than on the speed. Therefore, the most relevant per-
formance figure here might be bits per joule rather than the traditional bits per
second. In this respect, most widely-used block ciphers such as AES may not be
much attractive for use in such limited computing environments.

Design Objectives and Choices. The block cipher mCrypton is designed
with above new constraints in low-cost ubiquitous computing devices in mind.
The goal is to design a block cipher with extreme efficiency in resource usage
and power consumption, so that they can be hardware integrated or software
implemented in tiny processors embedded in inexpensive everyday commodities.
The design of mCrypton is based on the overall architecture of Crypton [7]
(mCrypton actually stands for a miniature of Crypton and can be thought of as
a 64-bit variant of Crypton with variable key sizes). The basic building blocks
were redesigned to fit the block/key sizes and the overall architecture was a little
bit simplified for better implementation efficiency. The key scheduling algorithm
was also completely redesigned.

The main objective of designing mCrypton is to come up with a block cipher
optimized for resource-constrained applications, so we decided to use the param-
eters of 64-bit block length and variable key lengths of 64 bits, 96 bits and 128
bits. Note that a large volume of bulk data encryption is unnecessary or even im-
possible in most tiny ubiquitous computing devices. Therefore, there will be no
security concern with small block size and it will be a natural choice for new de-
sign of a block cipher with specific application to extremely resource-constrained
devices. We also decided to provide three key size options (for minimal, moderate
and standard security, respectively) for better flexibility of cost-security trade-
offs. Note that production cost may be one of most critical factors in practice
for large scale deployment of tiny devices such as low-cost RFID tags.

Minimizing power consumption certainly should be one of most important
considerations in software/hardware design for tiny ubiquitous devices. In gen-
eral, a block cipher will be more power-efficient in hardware/software implemen-
tations if it can be implemented using less amount of computing resources. So
one obvious goal in designing a block cipher should be to achieve low complex-
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ity in hardware and software while providing sufficient security. Furthermore,
power consumption in CMOS hardware largely depends on signal transition fre-
quency during the processing. For example, branched signal paths may cause
dynamic hazards (multiple signal transitions before being stable) due to dif-
ferent arrival times at a logic gate, which consumes extra power. So, from the
standpoint of algorithm design, it would be preferable to make signal paths as
uniform as possible and to reduce signal transition probability as possible as one
can. These considerations would provide good reasons of basing our design on
the overall structure of Crypton: It has a regular and quite uniform structure
with its component functions efficiently implementable in both hardware and
software.

Related Work. There is no published literature recognized by the authors for
new design of block ciphers targeted to tiny ubiquitous devices. As a related
work to RFID security, Bono et al. reported successful reverse engineering and
key cracking for the secret algorithm (with only 40-bit key size) embedded in the
currently circulating TI RFID tags [1]. Their work once again signifies the im-
portance of using well-scrutinized open crypto algorithm for wide deployment of
security products. As a related work to efficient implementation on RFID tags,
Feldhofer et al. presented an 8-bit architecture, encryption-only mode implemen-
tation of AES for RFID authentication, which consumes about 3,600 gates and
requires about 1,000 clock cycles at 100KHz for one block encryption [3].

On the other hand, the TinySec implementation experience provides valuable
information on feasibility of software implementation of a block cipher in low-
cost sensor nodes [5]. Implementation experiments in Mica2 mote (8 MHz 8-bit
Atmel ATMEGA128L MCU with 4KB of RAM, 128 KB of flash (program space)
and 4KB of EEPROM, Chipcon radio module of up to 19.2 Kbps bandwidth)
showed that there was almost no performance degradation even with software
implementation of RC5 in Mica2 sensor nodes. Of course, the situation may
be different for sensor nodes with faster radio, such as Telos (8 MHz 16-bit TI
MSP430 MCU with 4KB of RAM, 60KB of flash and 16KB of EEPROM) whose
IEEE 802.15.4 radio can transmit at a much faster data rate of 250 Kbps [10].

General rule of thumb on the performance of security primitives required for
sensor nodes is that one block processing should be completed in under a few
byte times to avoid performance degradation due to the added cryptographic
operation, where byte time refers to the time required to transmit a single byte
over the radio [5]. Interestingly, Law et al. reported bench-marking data for var-
ious block ciphers on TI MSP430 MCU adopted by the Telos mote [6]. Their
performance result (on speed-optimized counter mode) shows that RC5 requires
85µsec (at 8MHz) per block encryption using 5.2Kbytes of code memory, while
AES requires 27µsec using 13.3Kbytes of memory. Since the byte time of Telos
mote is 32µsec, we can see that software implementation of cryptographic oper-
ations may be acceptable even for low-end sensor nodes. This also shows that
software efficiency (in particular on low-end 8-bit and 16-bit microprocessors)
should be an important consideration in designing a block cipher for ubiquitous
computing security.
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Notation. The following notation will be used throughout this paper:

– A 4-bit string is denoted by nibble and one byte of data is represented by
two 4-bit nibbles numbered from left to right (i.e., b = b0‖b1). Similarly, one
word of data consists of two bytes numbered from left to right.

– An 8-byte data consisting of 16 nibbles {a0, a1, · · · , a15} is internally repre-
sented as a 4 × 4 nibble array as follows:

A =

�
���

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

�
��� =

�
���

Ar[0]
Ar[1]
Ar[2]
Ar[3]

�
��� = (Ac[0]Ac[1]Ac[2]Ac[3]) ,

where Ar[i] and Ac[i] denote the i-th row and column of A, respectively.

– For an array A, At denotes transposition of A.
– X�k: left rotation of a 16-bit word X by k-bit positions.
– f ◦ g: composition of functions f and g, i.e., (f ◦ g)(x) = f(g(x)).
– •, ⊕: bit-wise logical operations for AND and XOR, respectively.

2 Algorithm Specifications

mCrypton processes an 8-byte data block by representing it into a 4 × 4 nibble
array as in Crypton [7]. The round transformation consists of four steps: nibble-
wise substitution, column-wise bit permutation, column-to-row transposition,
and then key addition. The encryption process involves 12 repetitions of the same
round transformation. The decryption process can be made almost identical to
the encryption process with a different key schedule.

2.1 Basic Building Blocks

Nonlinear Substitution γ. The nonlinear transformation γ consists of nibble-
wise substitutions on a 4 × 4 nibble array using four 4-bit S-boxes, Si (0 ≤ i ≤
3), such that S2 = S−1

0 and S3 = S−1
1 (see Section 3.2 for details). Each

component substitution function γi operates on the 4-nibble vector of the i-th
row (or column). That is, for a 4-nibble word a = (a0, a1, a2, a3)

γi(a) = (Si(a0), Si+1(a1), Si+2(a2), Si+3(a3)),

where indices are taken modulo 4 (see Fig.1).

a0 a1 a2 a3 S0(a0) S1(a1) S2(a2) S3(a3)

a4 a5 a6 a7 −→ S1(a4) S2(a5) S3(a6) S0(a7)

a8 a9 a10 a11 S2(a8) S3(a9) S0(a10) S1(a11)

a12 a13 a14 a15 S3(a12) S0(a13) S1(a14) S2(a15)

Fig. 1. The nibble-wise substitution γ
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The transformation γ and γ−1 can thus be defined for 4 × 4 data array A by

γ(A) = (γ0(Ac[0]) γ1(Ac[1]) γ2(Ac[2]) γ3(Ac[3]))

= (γ0(Ar[0]) γ1(Ar[1]) γ2(Ar[2]) γ3(Ar[3]))t

γ−1(A) = (γ2(Ac[0]) γ3(Ac[1]) γ0(Ac[2]) γ1(Ac[3]))

= (γ2(Ar[0]) γ3(Ar[1]) γ0(Ar[2]) γ1(Ar[3]))t.

Note that the symmetry in S-box arrangement ensures that γ/γ−1 and τ com-
mute, i.e., τ ◦ γ = γ ◦ τ and τ ◦ γ−1 = γ−1 ◦ τ (see below the definition for τ).
Obviously, we have γi(a) = γ0(a�16−4i)�4i.

Bit Permutation π. The bit permutation π bit-wise mixes each column of 4×4
array A using column permutation πi for each column i (0 ≤ i ≤ 3) (Fig.2):

π(A) = (π0(Ac[0]) π1(Ac[1]) π2(Ac[2]) π3(Ac[3]))

Each component column permutation πi is defined for nibble columns a =
(a0, a1, a2, a3)t and b = (b0, b1, b2, b3)t by

b = πi(a) ⇔ bj = ⊕3
k=0(mi+j+k mod 4 • ak),

where four masking nibbles mi’s are given by

m0 = 11102, m1 = 11012, m2 = 10112, m3 = 01112.

Ac[0] Ac[1] Ac[2] Ac[3] −→ π0(Ac[0]) π1(Ac[1]) π2(Ac[2]) π3(Ac[3])

Fig. 2. The column-wise bit permutation π

Note that the π transformation is involution (i.e. π = π−1) and satisfies the
shift property: πi(a) = π0(a)�4i. and πi(a�4k) = πi(a)�16−4k,where cyclic shift
on a column vector should be interpreted aover its row-transformed equivalent.

Column-to-Row Transposition τ . It simply moves the nibble at the (i, j)-th
position to the (j, i)-th position, i.e., B = τ(A) ⇔ bij = aji. Obviously, τ−1 = τ .

Key Addition σ. For a round key K = (K[0], K[1], K[2], K[3]), B = σK(A)
is defined by Br[i] = Ar[i] ⊕ K[i] (0 ≤ i ≤ 3).
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2.2 Encryption and Decryption

The encryption round transformation ρ of mCrypton consists of applying γ, π, τ
and σ in sequence to the 4 × 4 data array. More specifically, the round functions
for encryption and decryption are defined (for round key K) by

ρK = σK ◦ τ ◦ π ◦ γ,

ρ−1
K = γ−1 ◦ π ◦ τ ◦ σK

For 4 × 4 data array A and round key K, we can express B = ρK(A) using
the component functions γi’s and πi’s as

Bc[i] = πi(γi(Ac[i]))t ⊕ K[i] = π0(γ0(Ac[i]�16−4i))t ⊕ K[i] (0 ≤ i ≤ 3).

Let us define ρ′K as ρ′K = σK ◦ τ ◦ π ◦ γ−1, i.e., the round transformation
obtained by replacing γ by γ−1 in ρK , which will be used as a decryption round
transformation below. Then ρ′K(A) can be similarly expressed as:

Bc[i] = πi(γi+2(Ac[i]))t ⊕ K[i] = πi((γi(Ac[i]�8)�8))t ⊕ K[i] (0 ≤ i ≤ 3)

Let Ki
e be the i-th encryption round key consisting of 4 words, derived from a

user-supplied key K using the encryption key schedule. The encryption transfor-
mation EK of mCrypton under key K consists of an initial key addition and 12
times repetitions of ρ and then a final output transformation. More specifically,
EK can be described as

EK = φ ◦ ρK12
e

◦ ρK11
e

◦ · · · ◦ ρK2
e

◦ ρK1
e

◦ σK0
e
,

where φ is defined by φ = τ ◦ π ◦ τ .
Since γ−1 uses the same S-boxes as γ only with a different arrangement, we

can imagine that decryption process can be made to have almost the same archi-
tecture as encryption process by using φ-transformed round keys. The decryption
transformation DK can be shown to have almost the same form as EK :

DK = φ ◦ ρ′K12
d

◦ ρ′K11
d

◦ · · · ◦ ρ′K2
d

◦ ρ′K1
d

◦ σK0
d
,

where the decryption round keys are defined by

Kr−i
d = φ(Ki

e) for 0 ≤ i ≤ 12.

Note that the output transformation φ can be incorporated into the final round
as φ ◦ ρK12

e
= τ ◦ π ◦ τ ◦ (σK12

e
◦ τ ◦ π ◦ γ) = σK0

d
◦ τ ◦ γ.

2.3 Key Scheduling

mCrypton supports three key sizes: 64 bits, 96 bits and 128 bits. The 64-bit key
size may certainly be not enough for adequate security in general computing
environments, but it may provide still good security in resource-constrained,
cost-driven applications such as low-cost RFID tags. On the other hand, with
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96-bit keys we will be able to achieve moderate security in most applications.
In general, however, it would be more desirable to use the current standard key
size of 128 bits in any application if there is no severe restriction on available
resources.

The key scheduling algorithm for mCrypton consist of two stages: round key
generation through nonlinear S-box transformation and then key variables up-
date through simple rotations (word-wise rotation and bitwise rotation within
word). The simple linear key variables update makes it easy to carry out back-
ward processing for decryption key schedule and the nonlinear round key gen-
eration together with linear update of key variables in each round provides the
basis for the security against various attacks on key scheduling algorithms.

Let K = {K[i]}t−1
i=0 = (K[0], K[1] · · ·K[t − 1]) be the user key (t = 4, 6, 8 for

key sizes of 64, 96, 128 bits, respectively), where K[i] represents the i-th 16-bit
key word in K. Let C[i] be the round constant for round i (we will regard the
initial key addition as round 0 for notational purpose). Each round constant C[i]
consists of four identical nibbles, i.e., C[i] = 0xcicicici, where ci is generated by
xi in GF(24) defined by the irreducible polynomial f(x) = x4 + x + 1 (That is,
c0 = 1, c1 = 2, · · · , c4 = 3, c5 = 6, · · ·, etc.).

Specific key schedules for each key size are now presented in the following.
Here U = {U [i]}t−1

i=0 and V = {V [i]}t−1
i=0 will be used as key registers for state

update in encryption and decryption key schedules, respectively. Note that φi =
τ ◦ πi ◦ τ (0 ≤ i ≤ 3). The S-box operation on a word in the key schedule is
performed in nibble-wise with the same S-box S0, i.e., for a = (a0, a1, a2, a3),
S(a) = (S0(a0), S0(a1), S0(a2), S0(a3)). We also use four masking words Mi to
take the i-th nibble from word, i.e., M0 = 0xf000, M1 = 0x0f00, M2 = 0x00f0,
M3 = 0x000f.

Key Schedule for 64-Bit Keys

– Encryption round keys: The key register U is first initialized with K and
then encryption round keys are computed for round r = 0, 1, · · · , 12 as:

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [0] ⊕ T3)

U ← (U [1], U [2], U [3], U [0]�3)

– Decryption round keys: The key register V is first initialized as

V ← (K[0]�9, K[1]�9, K[2]�9, K[3]�9).

Then decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [0] ⊕ T3))

V ← (V [3]�13, V [0], V [1], V [2])
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Key Schedule for 96-Bit Keys

– Encryption round keys: The key register U is first initialized with the user
key K and encryption round keys are successively computed as follows: for
round r = 0, 1, · · · , 12,

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [4] ⊕ T3)

U ← (U [5], U [0]�3, U [1], U [2], U [3]�8, U [4])

– Decryption round keys: The key register V is first initialized as

V ← (K[0]�6, K[1]�6, K[2]�6, K[3]�6, K[4]�6, K[5]�6),

and decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [4] ⊕ T3))

V ← (V [1]�13, V [2], V [3], V [4]�8, V [5], V [0])

Key Schedule for 128-Bit Keys

– Encryption round keys: The key register U is first initialized with the user
key K and encryption round keys are successively computed as follows: for
round r = 0, 1, · · · , 12,

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [4] ⊕ T3)

U ← (U [5], U [6], U [7], U [0]�3, U [1], U [2], U [3], U [4]�8)

– Decryption round keys: The key register V is first initialized as

(V [0], V [1], · · · , V [7]) ← (K[4]�3, K[5]�14, K[6]�3, K[7]�14 ,

K[0]�14 , K[1]�3, K[2]�14, K[3]�3),

and decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [4] ⊕ T3))

V ← (V [3]�13, V [4], V [5], V [6], V [7]�8, V [0], V [1], V [2]).

3 Security Analysis

3.1 Diffusion Property of Linear Transformation

First note that it suffices to consider any one component transformation πi of π to
examine the diffusion property of π, since π acts on each column independently. It
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is also easy to see that any column vector with n (n < 4) nonzero nibbles is trans-
formed by πi into a column vector with at least 4−n nonzero nibbles (this number
4 is called as the diffusion order of πi). This is due to the operation of exclusive-or
sum in π. More important is that such input vectors giving minimum diffusion take
only a very small fraction of all possible inputs due to the masked bit permutation.

Let us examine in more detail the set of 16-bit numbers giving minimal dif-
fusion. For this, we define two sets of 4-bit values, Ωx and Ωy, as

Ωx = {0x1, 0x2, 0x4, 0x8}, Ωy = {0x5, 0xa} ∪ Ωx.

Let Ij be a set of input vectors with j nonzero nibbles which are transformed
by πi into output vectors with 4 − j nonzero nibbles. Then all possible 16-bit
values with minimum diffusion can be obtained as:

I1 = {(x, 0, 0, 0)t, (0, x, 0, 0)t, (0, 0, x, 0)t, (0, 0, 0, x)t | x ∈ Ωx},

I2 = {(x, x, 0, 0)t, (0, x, x, 0)t, (0, 0, x, x)t, (x, 0, 0, x)t | x ∈ Ωx},

I∗2 = {(y, 0, y, 0)t, (0, y, 0, y)t | y ∈ Ωy},

I3 = {(0, x, x, x)t, (x, 0, x, x)t, (x, x, 0, x)t, (x, x, x, 0)t | x ∈ Ωx}.

Then, it is easy to see that an element in Ij is transformed by πi into some
element in I4−j depending on the nonzero value x. The set I∗2 , containing two
separated nonzero nibbles, is somewhat special: it has 12 elements and is closed
under πi. In summary,

a ∈ Ij ⇒ πi(a) ∈ I4−j for j = 1, 2, 3,
a ∈ I∗2 ⇒ πi(a) ∈ I∗2 .

Type-1 Type-2 Type-3 Type-4

x 0 0 0 x 0 0 0 x 0 0 0 x 0 x 0
0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 x 0 0 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x x x 0 x 0 0 x x 0 x 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x 0 x x 0 x x x x 0 x x 0 x 0 x
x 0 x x 0 0 0 0 0 0 0 0 0 0 0 0
x 0 x x 0 0 0 0 x 0 x x 0 x 0 x
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x 0 0 0 0 0 0 0 0 x 0 x 0 0 0 0
0 0 0 0 0 x x 0 0 0 0 0 x 0 x 0
x 0 0 0 0 x x 0 0 x 0 x 0 0 0 0
x 0 0 0 0 x x 0 0 x 0 x x 0 x 0

Fig. 3. Examples of active nibble propagation in each diffusion type (x : active nibble)
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Since |I1| = |I2| = |I3| = 16 and |I∗2 | = 12, we can see that there are only 60
vectors with minimum diffusion. Observe that the nonzero nibbles in each input
vector should have the same value to achieve minimum diffusion. Also note that
the two values in Ωy − Ωx can only occur in the set I∗2 .

Now let us examine the diffusion effect of τ ◦ π through consecutive rounds
by assuming that in each round the S-box output can take any desired value,
irrespective of the input value. This assumption is to maximally take into account
the probabilistic nature of S-box transformation without details of the S-box
characteristics. Since it suffices to consider worst-case propagations, we only
examine inputs with 1, 2, or 3 nonzero nibbles in any one column vector of a
4× 4 nibble array, say the first column. The result is depicted in Fig.3. The sum
of the number of nonzero nibbles throughout the evolution is of great importance
to ensure resistance against differential and linear cryptanalysis(DC/LC). It is
easy to see that the number of nonzero nibbles per round is repeated with period
4 and their sum up to round 8 is at least 32.

3.2 S-Boxes Construction and Their Property

The maximum characteristic and linear approximation probabilities for an n×n
S-box S (δS and λS for short) can be defined as follows. Let X and Y be the set of
all possible 2n inputs/outputs of S, respectively. Then δS and λS are defined by

δS
def= max

∆x �=0,∆y

#{x ∈ X |S(x) ⊕ S(x ⊕ ∆x) = ∆y}
2n

,

λS
def= max

Γx,Γy �=0

(
|#{x ∈ X |x • Γx = S(x) • Γy} − 2n−1|

2n−1

)2

.

The nonlinear transformation adopted in mCrypton is substitution using four
4 × 4 S-boxes, Si (i = 0, 1, 2, 3) such that S−1

0 = S2 and S−1
1 = S3. These

4-bit S-boxes were searched for over some limited space of good 4-bit permuta-
tions produced by field inversion and affine transformation in GF(24) (actually
in GF((22)2), i.e., x → ax−1 + b, a, b ∈ GF((22)2) . The main selection criteria
is that the number of high-probability difference pairs (selection patterns, resp.)
in the resulting S-boxes should be as small as possible when the input is re-
stricted to the minimal diffusion set Ωy. This is to ensure that high-probability
differences/selection patterns should be more rapidly diffused by linear transfor-
mations and that it should be more difficult to form a chain of high-probability

Table 1. The selected 4 × 4 S-boxes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 4 15 3 8 13 10 12 0 11 5 7 14 2 6 1 9
S1 1 12 7 10 6 13 5 3 15 11 2 0 8 4 9 14
S2 7 14 12 2 0 9 13 10 3 15 5 8 6 4 11 1
S3 11 0 10 7 13 6 4 2 12 14 3 9 1 5 15 8



mCrypton – A Lightweight Block Cipher 253

S-box characteristics/linear approximations through consecutive rounds. Table 1
shows the four 4-bit S-boxes selected.

The inversion function in GF(24) is well-known to be differentially 4-uniform
and have the nonlinearity of 2−1, so the characteristic/linear probabilities of the
S-boxes are limited to at most δSi = 4

16 = 2−2 and λSi = (4
8 )2 = 2−2.

More importantly, if the input is restricted to the minimum diffusion set Ωy,
the maximum entry value in DC/LC tables is at most 2. So, for the best-case
analysis of DC and LC, we define these probabilities as

pd
def= δ

Ωy

Si
=

2
16

= 2−3, pl
def= λ

Ωy

Si
= (

2
8
)2 = 2−4.

3.3 Differential/Linear Cryptanalysis

The complexity of DC and LC is completely determined by the number of ac-
tive S-boxes involved and their characteristic/linear approximation probabilities.
Since the number of active S-boxes involved in any 8-round characteristic/linear
approximation is at least 32, we can obtain the most rough upper bound for the
best 8-round characteristic/linear approximation probability as (2−2)32 = 2−64

without details of the S-box characteristic/nonlinear properties.
However, the minimum number of active S-boxes can be obtained only for

the difference pairs/selection patterns in the minimum diffusion set and the best
S-box characteristic/linear approximation probabilities that can be achieved for
the values in the minimum diffusion set in our selected S-boxes are at most pd =
2−3 and pl = 2−4. Since it is reasonable to assume that a characteristic/linear
approximation involving a smaller number of active S-boxes with smaller S-
box characteristic/linear approximation probabilities should give better overall
probability than a characteristic/linear approximation involving a larger number
of active S-boxes with larger probabilities. Therefore, we can obtain a tighter
bound for the 8-round characteristic/linear approximation probabilities as

pC8 ≤ (pd)32 = 2−96, pL8 ≤ (pl)32 = 2−128.

Actually we can find such characteristics (no linear approximation, however)
by careful examination of DC/LC tables together with minimum diffusion pat-
terns. Note however that the probability of 2−64 is the threshold for applicability
of DC/LC since the number of all possible difference pairs/selection patterns
cannot exceed 264 in 64-bit block ciphers. There also exist a number of variants
or generalizations of differential and linear cryptanalysis, but theses attacks are
unlikely to much reduce the attack complexity. We thus strongly believe that
12-round mCrypton is far secure against differential/linear cryptanalysis.

We should also consider a variety of other cryptanalysis techniques for the
security of mCrypton, such as algebraic attacks, related key attacks and key
schedule cryptanalysis, etc. We believe that these attacks are equally unlikely
for 12-round mCrypton as in the case of Crypton (see [7] for further discussion
on the applicability of these attacks to mCrypton).
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4 Implementation Efficiency

4.1 Software Efficiency

The overall structure of mCrypton allows a very high degree of parallelism. This
results in high efficiency and flexibility in both software and hardware imple-
mentations. The encryption round of mCrypton can be efficiently implemented
using lookup tables by precomputing and storing 4 tables, each containing six-
teen 16-bit words, such that for 0 ≤ j ≤ 16,

SS0[j] = S0[j] ∧ m0 ‖ S0[j] ∧ m1 ‖ S0[j] ∧ m2 ‖ S0[j] ∧ m3,

SS1[j] = S1[j] ∧ m1 ‖ S1[j] ∧ m2 ‖ S1[j] ∧ m3 ‖ S1[j] ∧ m0,

SS2[j] = S2[j] ∧ m2 ‖ S2[j] ∧ m3 ‖ S2[j] ∧ m0 ‖ S2[j] ∧ m1,

SS3[j] = S3[j] ∧ m3 ‖ S3[j] ∧ m0 ‖ S3[j] ∧ m1 ‖ S3[j] ∧ m2,

where ‖ denotes concatenation of bit strings. These four extended S-boxes alto-
gether take a storage of only 128 bytes, small enough to be used even in very
limited computing environments such as mote-class sensor nodes. With these
lookup tables, we can implement one round of mCrypton only using 20 table
lookups (16 to SS tables and 4 to round key tables).

Note that for decryption we need 8-bit rotated versions of the above extended
SS-boxes and we also need the original S-boxes for key scheduling. This will not
be any problem in most computing environments since the storage requirement
is still at most 320 bytes altogether. Further, there may be no need of storing
rotated versions of SS tables in more resource-constrained 8-bit processors, since
the same SS tables can be used for decryption as well by referring to the second
byte of the table entry first. The four S-boxes may also be stored more compactly
only using 32 bytes of storage if desirable. So in this minimal setting we only
need 160 bytes of storage for four SS-boxes and four S-boxes.

We also need to consider the key scheduling overhead in software implementa-
tions. Real-time computation of round keys for every block of encryption/decrypt-
ion should be the last choice even in the resource-constraineddevices since its com-
putational overhead is never negligible. mCrypton requires two set of 52 round keys
of 16 bits for both encryption and decryption, corresponding to a storage of 208
bytes. This amount of temporary storage (RAM) will not be much overhead even
in typical sensor nodes such as Mica2 motes. Therefore, we can see that mCryp-
ton can be very efficiently implemented even in the very restricted 8-bit computing
environments. Furthermore, mCrypton will be particularly efficient on 16-bit plat-
forms such as Telos motes, since most operations are performed over 16-bit words.

4.2 Hardware Efficiency

Efficiency in low-cost hardware implementation is one of main design objectives
of mCrypton. Each component function is carefully designed with hardware im-
plementations in mind. To check the hardware complexity of mCrypton, a simple,
straightforward hardware was designed and simulated. The processor is based
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Fig. 4. Hardware architecture of mCrypton processor

on the implementation of a single round per clock cycle and transforms input
data in 13 clocks as depicted in Fig.4.

The circuit can start processing as soon as key and data are available on their
input pins (loaded in parallel), and execute both encryption and decryption in
13 rounds, where each round consists of π ◦ γ ◦ τ ◦ σ, except for the last round,
which corresponds to π◦σ. Here note that for simplicity we process data and key
internally in column basis, instead of in row basis described in the specification.
Encryption and decryption rounds share the same datapath logic. Note that
encryption and decryption rounds make use of just different arrangement of the
same S-boxes. Therefore, γ and γ−1 can be implemented using a single set of
16 S-boxes and a pair of appropriate selectors (multiplexers). This is actually
achieved in the γ transformation in Fig.4.

Key scheduler logic generates round keys from a given user key (64, 96, or 128
bits) and supplies them to the datapath for both encryption and decryption. The
initial secret key for encryption (decryption, resp.) is first loaded into the key
register KeyReg from which round keys are generated by the RKey component,
where round constants C[r]’s are generated by the Rcon component. The key
register is then updated for next round key generation through specified rotations
SFT1 (SFT2 for decryption, resp.).

The architecture shown in Fig.4 has been implemented for each key size using
0.13µm CMOS technology. The encryption-only mode is also implemented as
well as the full (encryption and decryption) mode, since encryption capability is
often sufficient for security in more resource-constrained low-cost RFID tags. The
resulting gate counts (1 gate = 2-input NAND gate-equivalent) are summarized
in Table 2. As can be seen from the table, elimination of decryption components
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Table 2. Hardware complexity (number of gates) of the mCrypton processor

Mode Encryption & decryption Encryption-only
Key size 64 bits 96 bits 128 bits 64 bits 96 bits 128 bits
Key scheduler 1338 1649 1952 736 992 1249

KeyReg 320 480 640 320 480 640
Rcon 52 52 52 21 21 21
φ function 288 288 288 0 0 0
S-box 107 107 107 107 107 107
Other logic 571 722 865 288 384 481

Round func. 2020 2020 2020 1588 1588 1588
DataReg 320 320 320 320 320 320
γ function 880 880 880 448 448 488
π function 288 288 288 288 288 288
Key xor(σ) 192 192 192 192 192 192
Other logic 340 340 340 340 340 340

Control unit 61 61 61 61 61 61
Routing 54 59 75 35 40 51
Total 3473 3789 4108 2420 2681 2949

greatly (more than 25%) reduces the overall complexity. We can see that the full
mode consumes about 3.5K to 4.1Kgates while the encryption-only mode about
2.4K to 3.0Kgates, depending on key sizes. The gate count for encryption-only
modes appears to be well within an economic range of 5-cent RFID tags.

The critical path delay (CPL) of our implemented architecture can be rela-
tively long, since it traverses from round key generation to round function eval-
uation. However, it turned out that the maximum CPL was still less than 9 ns
(allowing frequency over 100MHz) even for the full mode of 128-bit key version.
We did not much concentrate on speed issues during our implementation, since
operating frequencies in our target applications are extremely low: Most modern
UHF RFID chips use on-board oscillators with frequencies over 1MHz and most
mote-class sensor nodes operate at frequencies below 10MHz. Nevertheless, if
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Fig. 5. Alternative datapath architecture for shorter delay
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higher performances are preferred, the architecture may be modified as shown
in Fig.5. This architecture may reduce the CPL to almost a half of the original
but may somewhat increase the gate count in the case of encryption-only mode,
mainly due to the added complexity of the last round key conversion.

To further reduce the hardware complexity, we may adopt multiple clock cy-
cles/round architectures. At the minimum we may process input data in column-
by-column basis, based on the 5 cycles/round architecture. In this case the core
datapath logic can only implement four S-boxes, one πi transformation and 16
XORs. We are now developing such an architecture for more compact implemen-
tation. Our preliminary analysis based on the this architecture promises that the
overall hardware complexity can be considerably reduced (by about 30%). For
example, the encryption-only mode with 128-bit keys may be implemented with
about 2000 gates and the full mode with about 2500 gates.

Finally, we note that we did not consider any specific power consumption
minimization during the implementation. Clearly we would have to sacrifice the
circuit size more or less to apply power consumption minimization strategies
(e.g., see [8]). One way to reduce power consumption in the present architecture
would be to reduce the operating frequency (say, far below 100KHz), as far as it
satisfies the minimum response time required by standards such as EPC Gen2
and ISO/IEC 18000-6 (e.g., see [3]).

5 Conclusion

We presented a 64-bit block cipher mCrypton specifically designed for security
in resource-constrained applications, such as low-cost RFID tags and sensors,
and analyzed its security and efficiency. mCrypton is based on the proven archi-
tecture of Crypton with some improvements in hardware and software efficiency
under restricted environments. It also incorporates a flexible key schedule with
key sizes of 64 bits, 96 bits and 128 bits, which may provide greater flexibility
in cost-security tradeoffs often encountered in cost-driven applications such as
low-cost RFID tags. Our preliminary security analysis shows that mCrypton is
far secure against well-known attacks on block ciphers such as differential and
linear cryptanalysis. We also demonstrated through hardware simulation that
mCrypton is well-suited for our target applications. Our simple hardware design
shows that it can be implemented with the complexity of about 2.4K to 4.1K
gates, depending on key sizes and capabilities (encryption-only, encryption and
decryption). Furthermore, we expect that a more compact 5 cycles/round archi-
tecture under development could considerably reduce the complexity (by about
30%). As another possible future work, we could perform validation of software
efficiency on the 8/16-bit processors used in typical sensor nodes.
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