
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

1

Extended Generalized Feistel Networks using
Matrix Representation to Propose a New

Lightweight Block Cipher: LILLIPUT
Thierry P. Berger, Julien Francq, Marine Minier and Gaël Thomas

Abstract—While Generalized Feistel Networks (GFNs) have
been widely studied in the literature as a building block of a block
cipher, we recall in this paper the results of [1] where a unified
vision to easily represent them through a matrix representation
is proposed. We also introduce a new class of such schemes
called Extended Generalized Feistel Networks well suited for
cryptographic applications.

We instantiate this particular construction into a lightweight
block cipher called LILLIPUT analyzing its security and its
hardware performances.

Index Terms—Block Ciphers, Generalized Feistel Networks,
Matrix Representation, Lightweight Design Proposal, Security
Analysis, ASIC implementation.

I. INTRODUCTION

In this article, we first recall the results of [1] concerning
a matrix representation of GFNs that allows to directly study
diffusion properties of GFNs. Then, we extend this matrix
representation to introduce a new Feistel network class called
Extended Generalized Feistel Networks (EGFNs) with good
diffusion properties, already presented in [1]. We provide
generic security bounds for this new class of Feistel network
and we finally instantiate a particular EGFN into a new
particular lightweight block cipher called LILLIPUT. We thus
study the security properties of this proposal and present
its hardware implementation that compares well to other
lightweight ciphers (when implemented in a round-based and
in a serialized fashion) especially when both encryption and
decryption are necessary on a low-power 65 nm standard-cell
library.

This paper is organized as follows: Section II contains the
previous works in the litterature regarding GFNs. Section III
gives the matrix representation of a GFN, its link with diffusion
and shows how each possible GFN can be represented using
a particular matrix. Section IV extends GFNs into EGFNs
and contains a particular EGFN proposal with good diffusion
properties and gives a complete security analysis concerning
EGFNs and the particular instantiation. Section V describes the
specifications of LILLIPUT, our lightweight block cipher based
on the instantiation of our EGFN. Section VI explains our

This work was partially supported by the French National Agency of
Research: ANR-11-INS-011.

Thierry Berger and Gaël Thomas are with XLIM (UMR CNRS 7252),
Université de Limoges, 123 avenue A. Thomas, 87060 Limoges Cedex, France,
firstname.name@xlim.fr

Julien Francq is with Airbus Defence & Space - CyberSecurity, 1 Bd Jean
Moulin, CS 40001, MetaPole, 78996 Elancourt Cedex, France julien.francq@
cassidian.com

Marine Minier is with Université de Lyon, INRIA - INSA-Lyon, CITI,
F-69621, Villeurbanne, France, marine.minier@insa-lyon.fr

design choices for LILLIPUT especially for its key schedule. In
Section VII, we discuss the security of the whole cipher while
Section VIII deals with the hardware implementation results.
Section IX finally concludes this paper.

II. PREVIOUS WORK

While a classical Feistel network, such as DES [2] or
Camellia [3], divides a plaintext into 2 n-bit-long halves and
applies a function F to half of the state before adding the result
to the other half, a Generalized Feistel Network (GFN) divides
it into k ≥ 2 n-bit-long subblocks and potentially applies a
different F function to each subblock. Various GFNs exist in
the literature. This includes Type-1 as in CAST-256 [4] where
a single F function is used at each round; Type-2 as in HIGHT
[5] and CLEFIA [6] and Nyberg’s GFNs [7] where k/2 F
functions are used; Type-3, Source-Heavy (SH) as in SHA-1
[8] and Target-Heavy (TH) as in MARS [9] where more than
k/2 F functions are used. The pseudorandomness of these
constructions is studied in [10], [11], [12] for Type-1, Type-2
and Type-3 and in [11], [13], [12] for SH and TH GFNs. Fig.
1 gives an example of Type-2 GFN. Usually GFNs perform a
block-wise cyclic shift in their permutation layer.

In [14] and in [15], two more generic studies are pro-
vided: the authors analyzed Type-1, Type-2 and Type-3 GFNs
regarding non-cyclic permutations. More precisely, in [14],
the concept of maximum diffusion round is introduced. It
corresponds to the minimum number of rounds such as
every output block depends on every input block. It is a
quantifiable measure to maximize the diffusion inside the cipher.
The authors of [14] exhaustively searched all the optimum
permutations for k ≤ 16 and found that the diffusion in Type-2
GFNs can be improved. They also showed a lower bound on
the maximum diffusion round of Type-2 GFNs and when k is a
power of 2, they gave a generic construction based on de Bruijn
graphs whose maximum diffusion round is close to the lower
bound they found. Besides, they studied the pseudorandomness
of these GFNs giving a bound depending on the diffusion delay
and their resistance against classical attacks and showed that it
is actually improved as well. One of these Type-2 GFNs is used
in TWINE [16]. In [15], Yanagihara and Iwata gave the same
kind of constructions for Type-1, Type-3, SH and TH GFNs
with non-cyclic permutation. For Type-1 and Type-3 GFNs, they
showed that the maximum diffusion delay can be improved by
changing the permutation while for SH and TH GFNs it cannot.
For Type-1 GFNs, they gave an optimum generic construction
for any k and identified a necessary and sufficient condition

firstname.name@xlim.fr
julien.francq@cassidian.com
julien.francq@cassidian.com
marine.minier@insa-lyon.fr

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

2

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

f f f f
non-linear layer

permutation layer

Fig. 1. One round of a Type-2 GFN with k = 8 blocks.

for improved Type-3 to have a finite maximum diffusion round.
They also evaluated the resistance of all those GFNs against
classical attacks and showed that it can be improved in the
Type-1 and Type-3 cases.

III. MATRIX REPRESENTATION OF FEISTEL NETWORKS

Before defining the matrix representation of a GFN, let us
introduce a few notations. A GFN divides its input into k ≥ 2
blocks of n bits each. Let x0, · · · , xk−1 denote the input blocks
of a GFN round and y0, · · · , yk−1 the corresponding output
blocks. A GFN can be separated into two successive layers, as
done in [14], [15]: a non-linear layer and a permutation layer,
as in Fig. 1. The non-linear layer is made of key-dependent
round-functions whose inputs are some of the blocks and
whose outputs are added (x-ored) to some other blocks. They
are assumed non-zero. The permutation layer is a block-wise
permutation of the k blocks. The way the different round-
functions are arranged depends on the type of GFN considered,
while the permutation is usually the cyclic shift. We further
denote by yri the content of the i-th block after r rounds.

A. Diffusion Delay

We say that the input block xi affects the output block yrj if
xi effectively appears in the expression of yrj seen as a function
of x0, · · · , xk−1. We say that xi has diffused at round r if xi
affects every yrj for 0 ≤ j ≤ k− 1. If every input block xi has
diffused at round r, we say the GFN has reached full diffusion,
that is every output block yrj depends on every input block xi.
We call full diffusion delay the minimum number of rounds
required to reach full diffusion and denote it d+. In fact, the
notion of full diffusion delay is a general notion that can be
applied to any automaton as done in [17]. In the particular
case of GFNs, this is exactly the same notion as the maximum
diffusion round introduced in [14].

Another way to see the full diffusion delay is from a graph
point of view. For a k-block GFN, let us define the associated
directed graph as the graph with vertex set {0, · · · , k− 1} and
such that (i, j) is an edge if the output yj depends on the input
xi (directly or via a round-function). In other words, this is
simply the usual Feistel schemes with outputs folded onto the
input with same index. Knowing that, it is easy to see that
the notion of block xi affecting block yrj becomes there exists
a path of length exactly r going from i to j. Thus the full
diffusion delay d+ can be alternately defined as the smallest
integer r such that for all ordered pair of vertices (i, j) there
exists a path of length exactly r going from i to j. Two things
should now be noticed. First, the full diffusion delay of a GFN
depends solely on the structure of this graph and not on the
round-functions used in the GFN, provided they are not the
zero function. Second, if a GFN is in a full diffusion state at
round r then it will remain so at round r + 1 because for a

vertex i, if there is a path of length r to any vertex j then
by going through the permutation layer P , there is a path of
length r + 1 from i to P(j) for all j.

Similarly, we can define full diffusion delay when con-
sidering decryption instead of encryption and denote it d−.
Following the work of [14], we consider the both-way full
diffusion delay d = max(d+, d−). The both-way full diffusion
delay d for the different classical GFNs is summed up in Table
I. For security reasons, d should be finite.

GFN Type SH TH Type-1 Type-2 Type-3 Nyberg
d k k (k − 1)2 + 1 k k k

GFN Type [15] Type-1 [14] Type-2
d k(k + 2)/2− 2 2 log2 k

TABLE I
BOTH-WAY FULL DIFFUSION DELAY d FOR VARIOUS GFNS WITH k BLOCKS.

B. Matrix Representation of Feistel Networks

Recall that a GFN is divided into two distinct transformations:
first, the non-linear layer and second, the permutation layer,
represented by a permutation matrix P . We call matrix
representation of the non-linear layer, the matrix denoted
F with an all-one diagonal and with a parameter we call
F at position (i, j) if and only if there is a round-function
going from xj to xi. The parameter F is a formal parameter,
meaning it merely indicates the presence of a round-function
in the GFN, the same F is used for all the different round-
functions used throughout the cipher. If one follows the matrix
representation idea, one would define the matrix of the whole
GFN as M = P × F .

In other words, for a GFN with k blocks, letM be the k×k
matrix over Z[F] defined as follows: for indices 0 ≤ i, j ≤
k−1, the coefficient at row i and column j ofM is either a 1 if
output yi directly depends on xj , that is without going through
a round-function, or a formal parameter F , if yi depends on xj
via a round-function, or 0 otherwise. This corresponds to the
definition of Encryption Characteristic Matrix given in [18].
E.g. Fig. 2 gives matrices M, P and F of the GFN in Fig. 1.

M =


F 1

1
F 1

1
F 1

1
F 1

1

 P =


1

1
1

1
1

1
1

1

 F =


1
F 1

1
F 1

1
F 1

1
F 1


Fig. 2. Decomposition of the transition matrix of the GFN given in Fig. 1.

As round-functions in a GFN are unlikely to be linear, such
a matrix is not an exact representation. However it still retains
enough information to evaluate diffusion; namely which output
block yi is influenced by which input block xj and whether
this is done directly or via a round-function.

An important feature of GFNs is to transform a set of non-
invertible round-functions into an invertible permutation. Hence
the matrix of the GFN in decryption mode M−1 should not
contain inverses of expressions containing a F . This translates
into det(M) is independent of F , or equivalently det(F) =
±1, as P is a permutation matrix. This is the case for all
of the classical GFNs (SH, TH,. . .) including those of [14],
[15] because the matrix F is lower triangular with an all-one
diagonal.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

3

Another feature of many GFNs is quasi-involutiveness, that
is encryption/decryption is roughly the same process, up to
using the direct/inverse permutation layer P . To ensure that,
the non-linear layer should be quasi-involutive. Except the
Type-3 GFNs where the round-functions must be evaluated
sequentially while decrypting, all GFNs non-linear layers are
quasi-involutive. We choose to focus on GFNs that satisfy this
property:

Definition 1: A matrix M with coefficients in {0, 1, F} ⊂
Z[F] is a GFN matrix if it can be written as M = PF such
that P is a permutation matrix and the matrix F satisfies the
following conditions:

1) the main diagonal is filled with 1,
2) the off-diagonal coefficients are either 0 or F ,
3) for each index i, row i and column i cannot both have

an F coefficient.
In other words, the blocks of the GFN can be partitioned into

three categories: blocks that emit (through a round-function),
blocks that receive and blocks that do not emit nor receive.
This definition encompasses most of the known GFNs, with the
exception of the Type-3. The property of quasi-involutiveness
comes from the following theorem.

Theorem 1: LetM = PF be a GFN according to Definition
1. Then F is invertible and F−1 = 2I − F , where I stands
for the identity matrix.

Proof: To prove that F is invertible, we compute det(F).
Because of Condition 3 of Definition 1, for each index i either
row i or column i is all-zero except for the diagonal coefficient.
Thus by successively expanding the determinant along either
row i or column i, det(F) = 1.

To prove F−1 = 2I−F , we equivalently prove (F−I)2 =
0. Let fi,j (resp. f ′i,j) denote the coefficient of F − I (resp.
(F − I)2) at row i and column j. By definition of the matrix
product, for all i and j, we have f ′i,j = fi,ifi,j + fi,jfj,j +∑

` 6=i
6̀=j
fi,`f`,j =

∑
6̀=i

` 6=j
fi,`f`,j . In the sum, consider one term

fi,`f`,j . As ` 6= i, fi,` can either be zero or F . But, if fi,` is
non-zero then the `-th column of F contains an F thus, by
Condition 3 the `-th row must not contain any F , implying
f`,j = 0 for all j 6= `. Thus, each term fi,`f`,j is zero, so
f ′i,j = 0.

Notice that in the case where the outputs of round-functions
are xored with other blocks, then matrix F−1 = 2I − F is
simply F itself. Besides, we can characterize the matrices F
for which F−1 = 2I − F holds.

Theorem 2: Let F be a matrix that verifies Conditions 1
and 2 of Definition 1. If (F − I)2 = 0 then F also verifies
Condition 3.

Proof: Let fi,j be the coefficient of F − I at row i

and column j. For all i and j, we have 0 =
∑k−1

`=0 fi,`f`,j =∑
6̀=i,j fi,`f`,j . All the coefficients fi,` and f`,j in the previous

equation are off-diagonal, thus are either F or 0. Hence the
sum can be zero only if all its terms are zero. For each index
`, we need to prove that row ` and column ` cannot both have
an F coefficient. Suppose column ` has an F coefficient, say
fi,` with i 6= `. This implies that for all j 6= `, f`,j = 0. Thus
row ` has no F coefficient. By transposing, the same goes
when considering rows instead of columns.

In other words, the GFNs non-linear layer matrices F which
are quasi-involutive are exactly those where Condition 3 of
Definition 1 holds.

Recall that the full diffusion delay can be expressed in term
of distance in a directed graph. If one evaluates the matrix M
of the GFN in F = 1, we obtain the adjacency matrix of this
graph. The full diffusion delay d+ is then the smallest integer
such that Md+

has no zero coefficient. The same goes for the
decryption full diffusion delay d−, using M−d− .

C. Matrix Equivalences

Now that we have matrices representing GFNs, we define
an equivalence relation on them that will help us to find GFNs.

Definition 2: Two GFNs matricesM andM′ are equivalent
if there exists a permutation (matrix) π of the k blocks such
that πMπ−1 =M′.
In other words, two GFNs are equivalent if they are the same up
to block reindexation and thus share the same properties, such
as a common full diffusion delay. We then have the property
of “equivalent decompositions”:

Theorem 3: Let M = PF and M′ = P ′F ′ be two GFNs
according to Definition 1 and equivalent under Definition 2.
Let also π be such that πMπ−1 =M′. Then πPπ−1 = P ′
and πFπ−1 = F ′.

Proof: By hypothesis, we have πPFπ−1 = P ′F ′. Also
by definition, F and F ′ have an all-one diagonal and either F
or zero elsewhere. Hence F and F ′ both evaluate to the identity
matrix I in F = 0. Thus, specifying the above equation in
zero, we obtain πPπ−1 = P ′, implying πFπ−1 = F ′.

In other words, two GFNs are equivalent if and only if
both layers are equivalent with the same conjugating element.
For example, if one studies a class of GFNs with a fixed F
matrix, as done in [14], [15], Theorem 3 allows to define an
equivalence relation on the permutation layer.

D. Exhaustive Search of Feistel Networks

We investigated all the GFNs according to Definition 1 with
k = 8 blocks up to equivalence. We consider three parameters:
the full diffusion delay d, the number of round-functions s, and
the cost for full diffusion, i.e the number of round-functions
required for full diffusion, c = d× s. We found that there is
no GFN with cost c < 24. However, there are cases where the
number of rounds d is a more important criterion than the total
cost c. For each possible value of d ≤ 12, Table II gives the
minimum number of round-functions s required for an 8-block
GFN to fully diffuse in d rounds.

TABLE II
MINIMUM NUMBER s OF FUNCTIONS PER ROUND REQUIRED TO HAVE A

FULL DIFFUSION IN d ROUNDS AND CORRESPONDING TOTAL COST
c = s× d. FOR EACH CASE, THE NUMBER OF DIFFERENT F MATRICES

(#F) AND THE TOTAL NUMBER OF GFNS (#M) ARE ALSO GIVEN UP TO
EQUIVALENCE.

d 1, 2 3 4 5 6 7 8 9 10 11 12
s ∞ 16 7 6 4 4 4 3 3 3 2
c ∞ 48 28 30 24 28 32 27 30 33 24

#F 0 1 1 8 3 13 13 1 6 6 1
#M 0 5 3 26 9 101 652 18 100 56 5

Note that among the GFNs that fully diffuse in d = 6, with
s = 4 round-functions, are the Type-2 GFNs with non-cyclic

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

4

x0

y0

x1

y1

x2

y2

x3

y3

non-linear layer F

linear layer L

permutation layer P

N

M =

(
I F 1
F I 1
1

1

)
P =

(
1

1
1

1

)
N =

(
1

1
I F 1
F I 1

)
L =

(
1

1
I 1
I 1

)
F =

(
1

1
F 1

F 1

)
Fig. 3. Overview of an EGFN with three layers and corresponding matrices.

permutation given in [14], which are then diffusion-optimum
among the GFNs of Definition 1.

IV. NEW FEISTEL NETWORK PROPOSALS

In this Section, we first introduce Extended Generalized
Feistel Networks (EGFNs) as one possible generalization of
GFNs. We then introduce a generic EGFN family with good
full diffusion delay and cheap cost and we instantiate it for
k = 16 and a particular permutation layer. Sect. IV-C studies
the security of this particular EGFN taking [19] into account.

A. Extended Generalized Feistel Networks

For a GFN M = PF , to achieve quicker diffusion, one
can increase the number of round-functions in F . However,
this also makes costlier GFNs. The other possibility is to look
at the permutation layer P . Definition 1 already allows for
block-wise permutations. A possible generalization is to use a
linear mapping instead, thus looking for GFNs M = GF with
G an invertible k × k matrix. This is however much costlier
than a simple block-wise permutation and it loses the quasi-
involutive property. What we propose is to have a G which is
itself a GFN but with the identity mapping as round-function.
In other words, we write G = PL where P is a permutation
matrix and L is matrix similar to F but with I off-diagonal
non-zero coefficients instead of F . We call this matrix L the
linear layer. In that case, the whole Feistel network matrix
becomes M = PLF , e.g. Fig. 3. Because matrices L and F
have common structure, we regroup them into a single matrix
N = LF , and write M = PN . The matrix N is the new
function part of the GFN that contains the non-linear round-
functions but now has two formal parameters: F for non-linear
round-functions to provide cryptographic security and I for
identity round-functions to provide quick diffusion. We call
these new schemes Extended Generalized Feistel Networks.

As done in Sect. III-B for GFNs, to be considered an EGFN
we require that matrixM = PN is invertible and that det(M)
does not depend on F nor I , which translates into det(N) =
±1. Again, we choose to focus on EGFNs that are quasi-
involutive. Hence the following definition.

Definition 3: A matrixM with coefficients in {0, 1, F, I} ⊂
Z[F, I] is an Extended Generalized Feistel Network (EGFN)
matrix if it can be written as M = PN such that P is a
permutation matrix and the matrix N satisfies:

1) the main diagonal is filled with 1,
2) the off-diagonal coefficients are either 0, F or I ,
3) for each index i, row i and column i cannot both contain

a non-zero coefficient other than on the diagonal,
4) for each index i, if row i contains an I then it also

contains an F .
As in Sect. III-B, Condition 3 allows to partition the blocks
into emitters and receivers. Condition 4 ensures that the
pseudorandomness evaluation of EGFNs can be computed
(see Sect. IV-C1). Because Definition 3 is essentially the same
as Definition 1, the following theorem on quasi-involutiveness
is straightforward.

Theorem 4: Let M = PN be an EGFN according to
Definition 3. Then det(N) = 1 and N−1 = 2I −N .

Proof: Same as Theorem 1, since Conditions 1, 2 and 3
of Definition 3 are essentially the same as in Definition 1.
We can now define matrices L and F for the EGFNs of
Definition 3.

Definition 4: Let M = PN be a EGFN according to
Definition 3. Then define matrix F ∈ Z[F] as the evaluation
of N in I = 0 and similarly matrix L ∈ Z[I] as the evaluation
of N in F = 0.
Theorem 5 proves that this definition is working as intended,
i.e. M = PLF .

Theorem 5: Let N , F and L be defined as in Definition 4,
then N = L+ F − I and N = L × F = F × L.

Proof: The first equation is a straightforward consequence
of the definition of N , L and F . As for the second, let ai,j
be the coefficient at row i and column j of matrix LF and
show that ai,i = 1 and ai,j = Li,j + Fi,j otherwise (with
obvious notations). Write ai,i = Li,iFi,i+

∑
` 6=i Li,`F`,i. Then

ai,i = Li,iFi,i = 1 because all terms in the rightmost sum are
0 as a consequence of Condition 3 of Definition 3. For the same
reason, if i 6= j, ai,j = Li,iFi,j + Li,jFj,j +

∑
6̀=i

` 6=j
Li,`F`,j

and then ai,j = Li,j + Fi,j .
Finally, the last thing to update to EGFNs is the equivalence
relation. The definition of two equivalent EGFNs M and M′
is the same as for GFNs, the only difference being thatM and
M′ now also have I coefficients. In other words, a conjugating
element π of M and M′ exchanges the positions of F ’s, as
well as the positions of I’s but it cannot exchange an F and
an I . The analogous of Theorem 3 is straightforward.

Theorem 6: Let M = PLF and M′ = P ′L′F ′ be two
equivalent EGFNs defined by Definition 3. Let also π be such
that πMπ−1 = M′. Then πPπ−1 = P ′, πLπ−1 = L′ and
πFπ−1 = F ′.

Proof: Same as Thm. 3 by evaluating I , F or both in 0.

B. An Interesting Family and An Efficient Instantiation

1) An Interesting Family: When looking at optimal EGFNs,
we obtained the following result:

Theorem 7: Given an EGFN as defined in Def. 3 with k ≥ 4
blocks, k even, and its associated matrices M, N and P with
N the matrix representing the non-linear and linear layers of
the EGFN and with P the matrix of the permutation layer
defined by a permutation π.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

5

NonLinearLayer

LinearLayer

PermutationLayer

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15

π = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

F0
F1
F2
F3
F4
F5
F6
F7

Fig. 4. The EGFN that reaches full diffusion in d = 4 rounds. The permutation
π is given as a product of cycles and can also be found in Table III.

1) If the matrix N is equal to N = (I 0
A I) ∈ Z[F, I] where

I is the k
2 ×

k
2 identity matrix and where A, the lower

left quarter of N , is such that A =



F
(0) F I

... I

F (0)
...

F I I ··· I

;

2) And if P globally exchanges emitters (blocks x0 to
xk/2−1) with receivers (blocks xk/2 to xk−1) with
π(k/2− 1) = k − 1 and π(k − 1) = k/2− 1;

Then its diffusion delay d is equal to 4.
Proof: Writing N = (I 0

A I) ∈ Z[F, I] and the permutation
layer P as P =

(
0 P1

P2 0

)
by definition of π, then the matrix of

the EGFN becomesM = PN =
(P1A P1

P2 0

)
. ComputingM3 =(

(P1A)3+P1AP1P2+P1P2P1A (P1A)2P1+P1P2P1

P2(P1A)2+P2P1P1P2 P2P1AP1

)
shows it still

has zero coefficients, as P2P1AP1 does. Thus, d+ ≥ 4. Com-
pute then M4 =

(
a (P1A)3+P1AP1P2P1+P1P2P1AP1

b P2(P1A)2P1+(P2P1)2

)
with

a = (P1A)4 + (P1A)2P1P2 +P1AP1P2P1A+P2
2 (P1A)2 +

P2
2P1P2 and b = P2(P1A)3 + P2P1AP1P2 + (P2P1)2A.

Thus M4 has no zero coefficient because by definition P1 is

of the form: P1 =


0

P′1
...
0

0 ··· 0 1

. Thus, as the last row and the

last column of A has no zero, the product (P1A)2 has only
non zero coefficients. Thus, the condition π(k − 1) = k/2− 1
implies that d+ = 4. The reasoning is the same on M−1 to
prove that d− = 4 and finally that d = 4.

Thanks to Theorem 7, we then have a family of EGFNs with
s = k

2 round-functions and a diffusion delay of d = 4, thus
with total cost c = 2k. In comparison, [14] gives a family of
Type-2 GFNs that diffuse in d = 2 log2 k rounds. Their total
cost is then c = k log2 k. For k > 4, we achieve full diffusion
at a cheaper cost than they do.

2) An Efficient Instantiation: We give here a particular case
of EGFN deduced from Theorem 7. This EGFN with k = 16
blocks is depicted in Fig. 4. It is a modified version of the
one given in [1]. It was indeed noticed in [19] that the EGFN
proposed in [1] had a much lower resistance to differential
and linear cryptanalysis than the initial estimation. We then
modified the EGFN allowing any permutation layer P .

The permutation π given in Table III has been chosen

among the 37108 possible permutations (up to block reindexing
equivalence) that fulfill the conditions of Theorem 7. It has
been chosen to maximize the number of active S-boxes on 18,
19 and 20 rounds as shown in Section IV-C2a.

TABLE III
BLOCK PERMUTATION π AND ITS INVERSE.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(i) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7
π−1(i) 14 11 12 10 8 9 13 15 3 1 4 5 6 0 2 7

C. Security Analysis of our proposed Feistel Scheme

As done in [14], we analyze the security of the proposed
EGFN scheme described in Section IV-B2 with essentially
k = 16 as parameter regarding first the pseudorandomness of
the scheme and second its resistance to classical attacks. Note
that the pseudorandomness bounds obtained are generic and
essentially depend on the d value.

1) Pseudorandomness: As we have defined a new block
cipher structure, it is legitimate to introduce the pseudo-
random-permutation advantage (prp-advantage) and the strong-
pseudo-random-permutation advantage (sprp-advantage) of an
adversary as done in several works such as [20], [11], [21].
For this purpose, we introduce the two advantage notations as:

Advprp
C (q) = max

A:q-CPA
∣∣Pr[AC = 1]− Pr[APn = 1]

∣∣ (1)

Advsprp
C (q) = max

A:q-CCA
|Pr[AC,C−1

= 1]− Pr[APn,P
−1
n = 1]| (2)

where C is the encryption function of an n-bit block cipher
composed of uniform random functions (URFs) as internal
modules [20] whereas C−1 is its inverse; Pn is an n-bit uniform
random permutation (URP) uniformly distributed among all the
n-bit permutations; P−1

n is its inverse. The adversary, A, tries
to distinguish C from Pn using q queries in a CPA (Chosen
Plaintext Attack) attack and tries to distinguish, always using q
queries, (C,C−1) from (Pn,P

−1
n) in a CCA (Chosen Ciphertext

Attack) attack. The notation means that the final guess of the
adversary A is either 0 if A thinks that the computations
are done using Pn, or 1 if A thinks that the computations
are done using C. The maximums of Equations (1,2) are
taken over all possible adversaries A with q queries and an
unbounded computational power. Many results [20], [11], [21]
have appeared evaluating the security of Feistel variants in this
model. For example, Luby and Rackoff in their seminal work
[20] proved the security of a 2n-bit classical Feistel cipher
with 3 rounds in the prp model and with 4 rounds in the sprp
model considering that the classical Feistel cipher is composed
of n-bit-to-n-bit URFs (the bounds they found are in O(q2/2n)
for both cases). Those results have been generalized in [10]
and [22].

To prove the bounds of our scheme in those models, we
follow the methodology of [14] based on the results of [23]. To
do so, we introduce the following notations: Let Φkn,r denote
our k-block scheme acting on n-bit blocks, using r rounds
and with diffusion delay d. We first introduce the following
definition that will be useful for the next lemma:

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

6

Definition 5: Let H be a keyed permutation over ({0, 1}n)k

and let x = (x0, · · · , xk−1) ∈ ({0, 1}n)k with x[i] = xi. H is
said to be an ε-AU (ε Almost Universal) function if:

max
x 6=x’

Pr[H(x)[i] = H(x’)[i], for i ∈ {0, · · · , k − 1}] ≤ ε

Lemma 1: Let H and H ′ be two keyed permutations over
({0, 1}n)k that are respectively ε-AU and ε′-AU; Let denote
by Φkn,r our r-round EGFN with k branches acting on n-bit
blocks with a diffusion delay d where all n-bit round-functions
are independent URFs. Then we have:

Advprp
Φkn,2◦H(q) ≤

(
ε+

k

2n

)
·
(
q

2

)
(3)

Advsprp
H′−1◦Φkn,2◦H(q) ≤

(
ε+ ε′ +

k

2n−1

)
·
(
q

2

)
(4)

Proof: Intuitively, for equation (3), this lemma uses the
fact that after the application of H the inputs of function Φkn,2

are sufficiently distinct and are random strings. We then have
rare collisions at the outputs of Φkn,2. For equation (4), same
arguments hold in both directions. The proof of this lemma is
omitted as it is similar to those of Theorem 3.1 and Theorem
3.2 of [13] or is a direct extension of Lemma 9 and Theorem
7 of [22].

Theorem 8: Given the r-round EGFN Φkn,r with k branches
acting on n-bit blocks with a diffusion delay d where all n-bit
round functions are independent URFs. Then we have:

Advprp
Φkn,d+2

(q) ≤ kd

2n
q2 (5)

Advsprp
Φkn,2d+2

(q) ≤ kd

2n−1
q2 (6)

Proof: To demonstrate Theorem 8, we have first to show
that Φkn,d is an ε-AU function and second that Φkn,d which
is Φ−1

kn,d without the final shuffle is also an ε-AU function.
Let us first demonstrate (as done in [14]) that ∀i ∈

{0, · · · , k − 1}]: Pr[Φkn,d(x)[i] = Φkn,d(x’)[i]] ≤ d
2n .

Without loss of generality, we assume that
(xk/2−1, xk/2−2, xk/2+1) 6= (x′k/2−1, x

′
k/2−2, x

′
k/2+1). We

then estimate the probability that Φkn,d(x)[0] = Φkn,d(x’)[0].
By definition of d, there is an appropriate path of
length d on the graph of Φkn,d starting and finishing
at vertex 0. For h = 1, · · · , d, we can define a sequence
of internal inputs Yh = Φkn,h(x)[s(h)] following the
appropriate path. It is straightforward to see that
Pr[Y1 = Y ′1] = Pr[F (xk/2−2) ⊕ xk/2−1 ⊕ xk/2+1 =
F (x′k/2−2) ⊕ x′k/2−1 ⊕ xk/2+1] ≤ 1/2n because the
round function F is a URF (using the same reasoning,
this result also holds for probabilities of the other
branches, even the branch xk−1 due to the presence of
an F function). Then, Pr[Yd = Y ′d] is over bounded by∑d

j=2 Pr[Yj = Y ′j |Yj−1 6= Y ′j−1] + Pr[Y1 = Y ′1] ≤ d/2n

because all round functions are independent, i.e.
Pr[Yj = Y ′j |Yj−1 6= Y ′j−1] ≤ 1/2n. This proves the
result. Thus, Φkn,h is a kd

2n -AU function. Equation (5) of
Theorem 8 is proved using equation (3) of Lemma 1.

To prove the second equation of Theorem 8, we use exactly
the same reasoning on Φkn,d to show that Pr[Yd = Y ′d] ≤ d/2n
with Yh = Φkn,h(x)[s(h)] for h = 1, · · · , d. We then deduce

that Φkn,d is a kd
2n -AU function. Combining the fact that Φkn,d

is a kd
2n -AU function and that Φkn,d is a kd

2n -AU function through
Equation (4) of Lemma 1, we obtain Equation (6).

2) Evaluation of Security against classical attacks: Whereas
the bounds obtained in the context of differential and linear
cryptanalysis are mainly linked with the studied cipher, the
integral and impossible differential attacks are structural attacks
and can be studied in a generic way. Thus, we present in this
section the bounds for differential/linear cryptanalysis fully
instantiated for the EGFN given in Fig. 4. The first bounds
given for the integral and impossible differential cases are
generic for all possible EGFNs before to be instantiated for
the particular example given in Fig. 4.

a) Differential/Linear Cryptanalysis: Differential and
linear cryptanalysis are the most famous attacks on block
ciphers. They have been introduced respectively in [24] and
in [25]. Since their discovery, substantial work has been
done to first show the links between those two forms of
cryptanalysis [26] and to find better ways to prevent those
attacks from happening for a given cipher [27]. The usual
consensus about this last point is to count the minimal
number of active S-boxes crossed all along the cipher by
differential and linear characteristics denoted here respectively
by ASD and ASL. From those numbers, we can estimate the
induced maximal differential/linear probability depending on
the maximal differential/linear probability of the Fi function
(for i from 0 to 7 here) denoted by DP/LP . Usually, we
consider that DP = LP = 2−2 supposing that our 16 branches
scheme acts at nibble level.

Moreover, the best differential/linear attack against the cipher
has a complexity of about DPASD (respectively LPASL)
operations. Thus, a cipher is supposed to be secure against
differential/linear cryptanalysis as soon as 1/(DPASD) (re-
spectively 1/(LPASL)) is greater than the entire codebook.

It was noted in [19] that the EGFN initially proposed in [1]
had far fewer minimal number of active S-boxes than expected.
Thus we changed the permutation layer to thwart this problem.
Among all the permutations allowed by Theorem 7, we chose
the one (given in Table III) with the highest number of active
S-boxes after 18, 19 and 20 rounds. The minimal number of
active S-boxes up to 20 rounds for this permutation is given
in Table IV. Those bounds are obtained using a branch and
bound algorithm based on binary representation of linear masks
or differences. Thus, the algorithm runs through all possible
values considering that the linear part could cancel linear
masks/differences. The bounds given here take into account
all the possible cancellation paths. This last fact explains that
the minimal numbers of active S-boxes found for our scheme
are lower than the ones given for the best permutation found
in [14] (and also used in TWINE [16]). Indeed, crossing the
linear layer can cancel some linear masks/differences which is
not the case for TWINE.

Moreover, to be sure that there is no exploitable “linear
hulls”, we have tested for respectively 4, 5 and 6 rounds that
the mean of the observed linear bias is equal to the mean
of the theoretical linear bias using 222 plaintexts repeated on
1000 different keys for 4 and 5 rounds and using 226 plaintexts
repeated on 100 different keys for 6 rounds (beyond 6 rounds

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

7

the computations become infeasible). We have tested if there
exists a bias on each output nibble using one of the “best”
linear mask which is 0x0a→ 0x0a. The results of the Z tests
performed on each sample are sufficiently good to be convinced
that no bias behaves better than expected.

b) Integral Attack: In [28] L. Knudsen and D. Wagner
analyzed integral cryptanalysis as a dual to differential attacks
particularly applicable to block ciphers with bijective compo-
nents. A first-order integral cryptanalysis considers a particular
collection of m words in the plaintexts and ciphertexts that
differ on a particular component. The aim of this attack is
thus to predict the values in the sums (i.e. the integral) of the
chosen words after a certain number of rounds of encryption.
The same authors also generalize this approach to higher-
order integrals: the original set to consider becomes a set of
ml vectors which differ in l components and where the sum
of this set is predictable after a certain number of rounds.
The sum of this set is called an lth-order integral. In [29],
the authors improve the already known results in the case of
Feistel structure noticing that computations of the XOR sum
of the partial decryptions can be divided into two independent
parts through a meet-in-the-middle approach. We define the
following properties for a set of 2n n-bit words:
• ’C’ (for Constant) in the ith entry, means that the values

of all the ith words in the collection of texts are equal.
• ’A’ (for All) means that all words in the collection of

texts are different.
• ’?’ means that the sum of words cannot be predicted.
• ’B’ (for Balanced) means that the sum of all words taken

on a particular word is equal to 0.
Integral characteristics are of the form (α → β) with

α ∈ {C,A}k containing at least one A and β ∈ {C,A, ?, B}k
containing at least one A or one C or one B. To find
integral characteristics, we apply the method and the properties
described in [30]. We first look at characteristics α containing
exactly one A subblock, the other ones being C. By definition
of d, the state after d rounds does not contain C. If we
assume that the state after d rounds contains two As for
the most favorable n-bit blocks, say i and j (for example
blocks with indices k/2− 1 and k − 1), then by adding one
more round, the state at the subblock s = P(j) becomes
a B = (F (A) ⊕ A) or a B = (F (A) ⊕ A ⊕ A) subblock
for the simplest transformations, the other transformations
straightforwardly give same kind of results. After one more
round, the state at indice t = P(s) is of the same form
because no F function has been crossed. Adding another round
transforms this state into a state of the form ? = F (B)⊕? or
? = F (B) ⊕ B⊕? or more complicated expressions for y1.
Therefore, an integral characteristic (containing one A and
k − 1 Cs) exists for at most d+ 2 rounds. If we try to extend
at the beginning this first order characteristic into an lth-order
characteristic, we can add at most d rounds at the beginning
due to the definition of d. Thus, the maximum number of
rounds that can be reach by an lth order integral characteristic
is d+ d+ 2 = 2d+ 2.

We confirm this bound by experimental analysis and for the
dedicated example of EGFN given in Fig. 4. More precisely,
we first construct the following first order integral property

on 5 rounds: (C,C,C,A,C, · · · , C) gives after 6 rounds
(?, B, ?, · · · , ?). There are 7 equivalent first order integral
properties for seven different positions of the active nibble.

This first order integral can be extended by 4 rounds
at the beginning using a 15th order integral property:
(A15, A15, A15, C,A15, · · · , A15) can be turned after four
rounds into a property of the form (C,C,C,A15, C, · · · , C).
Thus, we can exhibit a 15-order integral property on 9 rounds.

c) Impossible Differential Attack: Impossible differential
cryptanalysis [31] is a form of differential cryptanalysis for
block ciphers. While ordinary differential cryptanalysis tracks
differences that propagate through the cipher with a probability
as large as possible, impossible differential cryptanalysis
exploits differences with 0 probability in intermediate rounds
of the cipher to sieve wrong key candidates.

More formally, impossible differential attacks are represented
by a differential transition α 6→ β with α, β ∈ ({0, 1}n)k for
a cipher E with k n-bit blocks with Pr[E(x) + E(x+ α) =
β] = 0 for any x. Intuitively, if we want to form an impossible
differential transition for our EGFN, we need to first form the
first part of the impossible differential on r1 rounds between
the input differential α0 = (α0

0, · · · , α0
k−1) and the output

differential after r1 rounds αr1 = (αr1
0 , · · · , α

r1
k−1). Then, we

form the second part of the impossible differential in the de-
cryption direction on r2 rounds between β0 = (β0

0 , · · · , β0
k−1)

and βr2 = (βr2
0 , · · · , β

r2
k−1). Then, the impossible differential

on r1 + r2 rounds is α0 6→ β0 if the differences αr1 and βr2

are not compatible in the middle of the cipher.
From the U -method of [18] or the UID-method of [32], the

differences αr1 and βr2 can be of the types: zero difference
(denoted 0), nonzero unfixed difference (denoted δ), non zero
fixed difference (denoted γ), exclusive-or of nonzero fixed and
nonzero unfixed difference (denoted by δ + γ), and unfixed
difference (denoted t). As done in [14], we can determine
the maximal number of rounds for an impossible differential
attack using the U-method described in [18]. This number of
rounds mainly depends on d as shown below:
• If αd

i for i in {k/2, · · · , k − 1} has type γ, there exists
a data path, P that does not pass through any F (i.e. the
equation corresponding to this path does not contain α0

i as
a part of arguments of F). If αd

j for j in {0, · · · , k/2 − 1}
has type δ then αd+1

l with l = P(i) has type δ + γ. If βd
k has

type γ, we are able to construct an impossible differential
attack on 2d+ 1 rounds.
• If all the data paths pass through at least one F function,
then both αd and βd do not contain differences of type neither
γ nor 0. Thus, we can only mount differences on d− 1 rounds
for the direct sens (i.e. α difference) and on d rounds for the
decryption sens (i.e. β difference). The maximal number of
rounds for this type of impossible differential attack is 2d− 1.
• By definition of d, there exists α0 such that αd−1

i

has type γ for some i. Similarly, there exists β0 with
βd−1
j has type γ′ for some j. If i = j and γ 6= γ′, we

can construct an impossible differential attack on 2d−2 rounds.

Finally, for the dedicated example of EGFN given in Fig.
4, implementing the U-method described in [33], we found 2
impossible differential characteristics on 8 rounds of the form:

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

8
TABLE IV

MINIMAL NUMBER OF ACTIVE S-BOXES FOR EVERY ROUND.
Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ASD 0 1 2 3 5 9 12 14 15 17 21 24 26 28 29 31 36 38 40 42
ASL 0 1 2 3 5 9 13 14 15 17 20 23 26 28 30 31 34 38 40 42

(0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0) that gives after 4 rounds
(∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) with α a non-zero dif-
ference and ∗ any difference. This difference is incompatible
with (0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) that gives after
4 backward rounds (∗, ∗, ∗, ∗, ∗, ∗, ∗, 6= 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)
with β a non-zero difference.

V. SPECIFICATIONS OF THE LIGHTWEIGHT BLOCK CIPHER
LILLIPUT

In this section we present our dedicated lightweight block
cipher LILLIPUT that is based on the EGFN described in Fig.
4. Our goal is for LILLIPUT to fit in harsh constraints environ-
ments where both encryption and decryption are mandatory,
like some protocols described in ISO 9798-2 [34]. The targetted
environment of LILLIPUT is hardware and the primary metric
we will minimize is chip area. However, we also chose not to
deter software performances too much, thus avoiding bitwise
permutations or easying bitslice implementations; and we also
tried to reduce latency.

But first, let us introduce the following notation: For binary
strings, denote concatenation by ||; To emphasize a string x is
of length n, we may write it x(n); We denote by � i and � i
respectively the right and left shifts, and by ≫ i and ≪ i
the right and left rotations of i bits.

A. Encryption Process

LILLIPUT is a 64-bit block cipher with an 80-bit key. The
whole encryption process is depicted in Fig. 5. As previously
explained, LILLIPUT uses an Extended Generalized Feistel
Network (EGFN) with 64-bit state and a round function acting
at nibble level. The state X is seen as 16 nibbles. These
nibbles are denoted X15, · · · , X0. It is composed of 30 rounds,
i.e. 30 repetitions of a single EGFN called OneRoundEGFN,
depicted in Fig. 4 where each Fi for i from 0 to 7 is defined as
Fi = S(X7−i ⊕RKi) where S is an S-box that acts at nibble
level and where RKi is the nibble of position i of the 32-bit
subkey RKj of the round j. The 30 32-bit subkeys RKj are
generated from the master key using the key schedule.

Note that the last round misses a PermutationLayer
for involution reasons.

OneRoundEGFN

OneRoundEGFN

OneRoundEGFN

P

/64

/64

C

RK0/
32

RK1

RK29

...

NonLinearLayer

LinearLayer

PermutationLayer

NonLinearLayer

LinearLayer

Fig. 5. LILLIPUT Encryption

The S-box S used here is the 4-bit S-box given in Table V.

TABLE V
S-BOX IN HEXADECIMAL NOTATION.

x(4) 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x(4)) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

B. Key Schedule

The key schedule depicted in Fig. 6 produces the 30 subkeys
RK0 to RK29 from the master key K and is designed to allow
on-the-fly computations. It uses an 80-bit Linear Finite State
Machine (LFSM). Its inner state is denoted Y and is initialized
with the master key K. The subkeys are extracted from the
LFSM state Y using ExtractRoundKey, a layer of parallel
S-boxes. Subkey RK0 is extracted from the LFSM initial state
(i.e. the master key K). The LFSM state Y is then updated
using RoundFnLFSM and the next subkey RK1 is extracted.
And so on until RK29.

The state Y is made of 20 nibbles Y19, · · · , Y0 split among
4 LFSRs, L0 to L3, acting on 5 nibbles each: L0 acts on Y0

to Y4, L1 on Y5 to Y9 and so on.
We use here LFSRs inspired by the results of [35] and [17]

on LFSRs. As described in [35], our 4 LFSRs are nibble
oriented and seen as a Feistel network. More precisely, using
the matrix representation introduced in [35], it is possible
to construct word-oriented LFSRs with word feedbacks well
chosen to fit with a Feistel representation generalizing the
classical Fibonacci and Galois representations. Moreover, the
operations used to compute the feedbacks are simple word-
oriented operations such as shifts or rotations. The two main
advantages of those constructions are a clear speed-up of
diffusion and -due to the Feistel construction- a simple reverse.
The 4 LFSRs used in the LILLIPUT key schedule are Feistel-like
word-oriented LFSRs acting on 5 nibbles. They are completely
described in the following (see also Fig. 7 in Appendix A for
a pictural view). Thus, the RoundFnLFSM function seen as
4 Feistel-like word-oriented LFSRs can be divided into two
transformations: MixingLFSM which holds the feedbacks,
followed by PermutationLFSM which is the word-wise
cyclic shift, as depicted in Fig. 6. The precise description of
both transformations is given below.

RoundFnLFSM

RoundFnLFSM

K

/80
ExtractRoundKey

ExtractRoundKey

ExtractRoundKey

RK0 /
32

RK1

RK29

...

MixingLFSM

PermutationLFSM

Fig. 6. LILLIPUT Key Schedule

MixingLFSM: For each of the 4 parallel LFSRs L0 to L3

(see also Appendix A), it consists in xoring some nibbles to
some others nibbles in a Feistel-like manner:
• for L0: Y0 ← Y0 ⊕ (Y4 ≫ 1) and Y1 ← Y1 ⊕ (Y2 � 3),
• for L1: Y6 ← Y6 ⊕ (Y7 � 3) and Y9 ← Y9 ⊕ (Y8 ≪ 1),
• for L2: Y11 ← Y11⊕(Y12 ≫ 1) and Y13 ← Y13⊕(Y12 � 3),
• for L3: Y16 ← Y16 ⊕ (Y15 � 3)⊕ (Y17 ≪ 1).

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

9

PermutationLFSM: For each of the 4 parallel LFSRs L0

to L3, it consists in a left cyclic shift of its 5 nibbles, i.e.
Yi ← Yi−1 mod 5, as depicted in Appendix A.
ExtractRoundKey: For each round of encryption, the

subkey RKi is extracted from the LFSM inner state using a
non linear extracting function in a bitsliced way. First, some
nibbles of the state are extracted:
Z(32) ← Y18||Y16||Y13||Y10||Y9||Y6||Y3||Y1 and

let Z31, · · · , Z0 be the bits of Z then RKi
j =

S(Zj ||Z8+j ||Z16+j ||Z24+j) where S is the same S-box
as in the datapath. Finally, the current round number
i ∈ {0, · · · , 29} is xored to the last 5 bits of the subkey:
RKi ← RKi ⊕ i(5)||0(27).

C. Decryption Process

As LILLIPUT is a Feistel network, decryption is quite
analogous to encryption but uses the inverse block permutation
π−1 given in Table III and the subkeys in the reverse order.
Note that NonLinearLayer and LinearLayer commute,
hence can be computed in any order. The whole decryption
process is depicted in Fig. 8 in Appendix B. Besides, as the
LFSM of the key schedule is made of Feistel-like LFSRs, the
same argument leads to the ability to compute the different
subkeys in the reverse order starting from the LFSM inner
state Y 29, as depicted in Fig. 9 in Appendix C.

VI. DESIGN RATIONALE

We justify here our design choices in a diffusion purpose
perspective for the encryption process and the key schedule.

A. Structure

When designing LILLIPUT, our overall goal was to maximize
diffusion between blocks while keeping reasonable implemen-
tation performances. We decide to use an EGFN to reach this
purpose because for the EGFN used in LILLIPUT the full
diffusion delay can be reduced to d = 4 which is the best
diffusion delay obtained for a Feistel-like cipher.

We chose a 64-bit state as it is consistent with our goal: to
limit the memory footprint. We split that state into 16 nibbles
rather than 8 bytes so that the block size matches the S-box
size, i.e. the non linear layer is made only of 8 parallel calls
to a 4-bit S-box and 8 subkey additions. As said before, the
π permutation has been chosen to maximize the number of
active S-boxes on 18, 19 and 20 rounds (see Section IV-C2a
for more details).

B. S-box

LILLIPUT uses a single S-box as its single non linear
component. Hence its choice is of crucial importance for the
LILLIPUT security and efficiency. For hardware efficiency, we
chose a 4-bit S-box rather than an 8-bit one, as they are much
cheaper to implement. With a future hardware optimized serial
implementation in mind, we have decided to use the same
S-box 8 times, rather than having 8 different S-boxes. It will
help to implement only one S-box and reuse it intensively.

Various classifications of 4-bit Sboxes [36], [37], [38] exist in
the literature. For LILLIPUT, we wanted the S-box to satisfy the

following security criteria: the maximum differential probability
and the maximum (absolute) linear bias are 2−2, the algebraic
degree is 3, and it has no fixed-point. We select four such S-
boxes with simple algebraic expressions (i.e. a minimal number
of non-linear transformations), each one corresponding with
one of the four classes proposed in [38]. To choose the S-box
that will be finally implemented, we have first implemented
these 4 S-boxes separately with the goal to choose those
with the smallest gate count. It appeared that all the 4 S-
boxes have around the same area (around 23 GEs1). So, we
have implemented LILLIPUT with each S-box to see which
one combines the best with the rest of the design. It finally
appears that, due to the compiler internal optimizations, the
S-box depicted in Table V induces the smallest gate count for
LILLIPUT, and so this is the one we have definitely chosen.

C. Key Schedule

As done in other lightweight block ciphers, such as
PRESENT [39], TWINE [16], LBlock [40] or SIMON [41],
an 80-bit register initially loaded with the master key is
sequentially updated and the subkeys are extracted from that
register. However, we chose to split the key into 4 smaller
LFSRs that are updated in parallel because small LFSRs mix
their content faster and increase performance. The downside
is that each LFSR could be attacked independently if their
contents were not combined back during the subkey extraction
which is not the case here. Yet this design is not entirely new
as a similar situation happens in the DES [2] key schedule.

We use LFSRs inspired by the results of [35] and [17]
on LFSRs. In [35], the authors generalize LFSR beyond
Fibonacci/Galois representation by allowing any cell to be
used as feedback in any other cell. They call these new LFSRs
“Ring-LFSRs” because of the rotation occuring at each update.

As the LFSRs in [17], the LFSRs chosen here have also a
word-oriented structure: instead of performing bit-wise shift at
each iteration and having binary feedbacks, they are shifted
by one word at each update. As for the feedbacks, they are
also word-oriented: one whole word is xored to another after
possibly being transformed by a software-friendly operation
such as shift or rotation. Those LFSRs are called Word-LFSRs
by their authors [17]. When a LFSR is both a Word and Ring
LFSR, we call it a Word-Ring-LFSR. Word-Ring LFSRs have
thus a smaller diffusion delay than classical Fibonacci or Galois
LFSRs. Moreover, and to simplify the reverse process, those
Word-Ring-LFSRs can be represented in a Feistel-like manner
(see in Fig. 7 in Appendix A for practical examples).

We therefore investigated all possible Word-Ring-LFSRs
acting on 5 nibbles with the following conditions: the feedbacks
are made in a Feistel-like manner, a feedback nibble can
be rotated or shifted before being xored, the connection
polynomial is primitive of degree 20 (to produce m-sequences)
and the number of XOR gates used is minimal. This way, the
LFSRs will be well-suited for both hardware and software
implementations and can be easily reversed. It turned out that,
up to block reindexing equivalence, there are exactly 16 such
LFSRs, each with a cost of 5 XOR gates. On those 16 LFSRs,

1To see the meaning of GE metric, please refer to Section VIII.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

10

we observed the following properties/symmetries: half of them
are the mapping-composition inverse of the other half; half
of them can be deduced from the other half by inverting the
role of left and right inside the nibbles, e.g. � i becomes � i.
Finally, the 16 LFSRs we observed can be deduced from just
two of them. So, we took two LFSRs from the first class and
two LFSRs from the second class. This choice ensures that
different parts of the key are handled differently by different
LFSRs, i.e. to break symmetries in the key schedule.

To summarize, a Feistel-like LFSRs structure has been
chosen to perform on-the-fly computations for both encryption
and decryption: the subkeys can be computed in the reverse
order up to the equivalent decryption key (see Fig. 9 in
Appendix C).

For the ExtractRoundKey operation, the extraction
points have been chosen such that three consecutive subkeys
deplete the whole key space entropy and to allow a bitslice
software implementation.

VII. SECURITY ANALYSIS

We analyze the security of LILLIPUT regarding classical
attacks in the unknown key model and also in the related and
chosen key models. First, using the instantiated bounds and
the results already provided in Section IV-C2, we present the
best attacks we can mount regarding impossible differential
attack, integral attack and differential/linear cryptanalysis and
compare them with the results obtained for TWINE [16] due
to the similarities existing between both designs: indeed the
EGFN we use can be seen as a TWINE-like GFN with an
additional linear layer. In the same way, we give the best results
we obtain for related key attacks and chosen key attacks.

A. Classical Attacks

1) Impossible Differential Attack: Based on the 8-round
impossible differential distinguisher described in Section
IV-C2c, we are able to attack 14 rounds of LILLIPUT adding
3 rounds at the beginning and 3 rounds at the end. To do
so, we need to guess 72 bits of the subkeys (40 at the
beginning and 32 at the end), based upon plaintexts of the form
(δ1, 0, δ2, 0, 0, 0, 0, 0, δ3, δ4, δ5, 0, δ6, δ7, δ8, δ9) and ciphertexts
of the form (γ1, 0, 0, γ2, 0, 0, 0, 0, γ3, γ4, γ5, γ6, γ7, γ8, γ9, 0)
where δi and γi are differences. In this case, the complexity
of this attack is about 277 encryptions using 270 pairs of
plaintexts/ciphertexts that can be generated using 263 well
chosen plaintexts.

2) Integral Attack: Based on the 15-order integral property
on 9 rounds described in Section IV-C2b, we can turn this
distinguisher into a 13-round attack against LILLIPUT adding
4 rounds at the end. In this case, we need to guess 76 subkey
bits. First, we cipher a structure of 260 elements with 15 active
nibbles (i.e. 15 nibbles with the P property) and obtain the
corresponding ciphertexts. From those texts, we decipher the
4 added rounds and test if the corresponding values have a
sum equal to 0 using the partial sum method [42] and its
improvement in the case of a Feistel structure [29]. The cost
for testing if the property occurs by deciphering 4 rounds and
by testing 76 subkey bits is about 277.8 S-box evaluations
corresponding to 271 14-round encryptions. If yes, maybe the

good key has been found. However, the false alarm probability
is equal to 1 − 1/24. So we need to repeat the process on
several structures, say 4, to decrease the false alarm probability.
Thus, the complexity of the attack becomes 273 encryptions
using 262 plaintexts/ciphertexts.

3) Differential / Linear Cryptanalysis: Based on the analy-
sis presented in Section IV-C2a, we provide here the best
truncated differential and linear masks we found for 16
rounds of LILLIPUT with 31 active S-boxes leading to over-
approximate the differential/linear characteristic probability by
2−62. The best truncated differential path is given by an input
of the form (α0, 0, α0, α0, α0, α0, α0, α1, α0, 0, 0, 0, 0, 0, 0, 0)
that gives after 16 rounds an output of the form
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0) where α0, α1, and
β are non-zero 4-bit differences such that α0 → α1

is a valid differential for the S-box. In the same
way, the best truncated linear input mask is given by
(γ0, γ0, 0, γ0, γ0, γ0, γ0, γ1, γ0, 0, 0, 0, 0, 0, 0, 0) that gives after
16 rounds an output truncated linear mask of the form
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0) where γ0,γ1, and δ are
any non-zero 4-bit linear masks such that γ0 → γ1 is a valid
linear transition of the S-box.

Moreover, compared to the impossible differential attack, we
naturally expect that the number of rounds that can be added
at the beginning and at the end for the key guessing step is
lower because the number of non-zero variables at the input
is larger in both cases. So, we except to be able to mount
differential/linear attacks on at most 21 rounds.

B. Related Key and Chosen Key Attacks

The related key attacks introduced by E. Biham in [43]
in 1993 allow an attacker to know some relations between
different keys without knowing the keys themselves and to
encrypt under those keys some plaintexts. From those pairs of
plaintexts/ciphertexts, the aim of the attacker is to recover the
key. In the related key settings, we first evaluate the related
key pairs that activate the lowest number of S-boxes in the key
schedule. Due to the bit oriented nature of our key schedule,
we have only evaluated this number for at most 6 bits with
differences. We obtain that the best related key path is obtained
for two master keys having differences in bits 28 and 38
leading to activate 32 S-boxes in all the subkeys (this value
does not take into account the S-boxes crossed during the
encryption process itself). Moreover, trying to launch a related
key impossible differential attack seems to lead to an attack
on 17 rounds of LILLIPUT considering two master keys with
a single bit difference at position 43.

Chosen key attacks have been introduced by Biryukov et al.
in [44]. Usually, to test if there exists such differential paths in
byte or nibble oriented ciphers, the algorithm to implement is
the one described in [45]. However, in our case, and due to the
bit oriented structure of our key schedule, such an algorithm
has an infeasible complexity. So, we limit our study to the
case of one up to five active bits injected through the master
key difference and thus the key schedule. We thus obtain a
differential path with 40 active S-boxes on 23 rounds.

Finally, to prevent slide attacks [46] and as usually done
in other block cipher proposals, different round constants are

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

11

added to each subkey during the key schedule process. So, we
consider LILLIPUT immune to slide attacks. In the same way,
Meet-In-The-Middle (MITM) attacks are impracticable against
LILLIPUT because the key schedule has been designed such
that every 3 consecutive subkeys use all bits of the master key.

C. Security Evaluation Summary

Due to the better diffusion of our scheme compared to
TWINE (in our case, d = 4 whereas for TWINE, d = 8),
structural attacks such as impossible differential attack or
integral attack reach fewer rounds than for the TWINE
case. However, as the improved diffusion delay comes from
the additional linear layer composed of XORs, our results
concerning classical differential and linear cryptanalysis are
worse than the TWINE ones even if in our case, we only
obtain an upper bound. Moreover, as TWINE has a nibble
oriented key-schedule whereas our own key schedule is bit
oriented, we cannot compare the results obtained in the related
key and chosen key models.

Finally, as our best attack against LILLIPUT reaches, in the
differential/linear context, at most 21 rounds, we conjecture
that there is no attack against 22 rounds of LILLIPUT in the
single key settings more efficient than the exhaustive key search
leaving 8 rounds of security margin. As our best attack in the
related/chosen models reaches 23 rounds, we also conjecture
that there is no attack against 25 rounds of LILLIPUT in the
related, known and chosen key settings more efficient than the
exhaustive key search leaving 5 rounds of security margin.

VIII. IMPLEMENTATION ASPECTS

As stated at the beginning of Sect. V, our goal is to
check if LILLIPUT can fit in harsh constraints environments
where 3-pass mutual authentication between the reader and
the tag is required. In this scenario, we have to implement
a challenge-response protocol where both encryption and
decryption are mandatory like some protocols described in
ISO 9798-2 [34]. Such protocols are implemented nowadays
in industrial products like e.g. NXP’s DESFire family.

Usually, in lightweight cryptography, one of the most
dominant metric to optimize is chip area. This metric can be
expressed in µm2 but this value is dependent of the standard
cells technology. To ease comparisons between implementa-
tions, the circuit area is measured in Gate Equivalences (GEs).
A GE is the area of a 2-input NAND gate in the used standard
cell technology. So the area of the circuit expressed in GEs
is the surface of the circuit in µm2 divided by the surface
of a NAND gate. Thanks to this GE metric, we can more
easily compare the area cost of two proposals implemented in
different technologies. In addition to the area circuit, we have
also to take care of the power consumption of our LILLIPUT
implementation and its latency.

A. Advantages of the LILLIPUT Structure

1) SPN vs. Feistel-like networks: Usually, if a designer wants
to create an ad hoc algorithm (i.e. from scratch), he has two
possibilities: implement a Feistel or an SPN network.

Implementing Feistel networks brings some advantages
compared to SPNs regarding circuit area. First, the round

function f is identical for the encryption and the decryption
processes. So, since we want to implement a protocol where
both encryption and decryption are mandatory, the same circuit
can be used for both procedures. Compared to an SPN, it is
a real gain because the encryption and decryption functions
that have to be implemented are different, and so no hardware
resource can be shared between encryption and decryption.
Another comparative advantage is that only one half of the
cipher state is processed at each round, so hardware resources
for the other half are saved.

Usually, two commonly believed drawbacks reduce these
advantages. The first is that Feistel networks need some XORs
to recombine the modified half part of the cipher state with the
other. In our case, it only consists of 21× 4 XORs, which are
equivalent to only 21× 4× 2.25 = 189 GEs in our used ASIC
technology. Another argument is that Feistel networks need
more rounds than an SPN for a comparable diffusion effect,
which induces throughput, power consumption and energy
overheads. This is not the case for LILLIPUT because of its
better diffusion: we only have to compute 30 rounds, which is
comparable to some other lightweight SPNs like PRESENT (31
rounds) or other GFNs like Piccolo (25 rounds for a 80-bit key).
We have only to take care of the power consumption/energy
overhead brought by the added 189 GEs; We can guess that
the contribution of these 189 GEs on the power consumption
is negligible compared to the global circuit.

2) Basic Components of LILLIPUT: To implement the
confusion effect, LILLIPUT uses 4×4 bit S-boxes which are
by far smaller than 8×8 S-boxes and 6×4 ones: the LILLIPUT
S-box takes around 23 GEs to implement, compared to some
dozens for 6×4 ones, and some hundreds for 8×8 ones.
Moreover, to limit the number of rounds, we have chosen
an S-box which gives a good trade off between security and
hardware cost. The diffusion effect is only computed thanks
to 189 GEs and a bit permutation which is very efficient to
implement in hardware.

The memory elements (flip-flops) used to store the subkeys
and the cipher state are the costliest hardware elements to
implement, and are those which consume the most energy. Just
to store the 64-bit cipher and 80-bit key state, we need (80 +
64)× 5.75 = 828 GEs. Typically, this storage is responsible
for at least 50% of the total power consumption/energy and
the area of the circuit.

For the key schedule, we have chosen to make it simple, but
not as simple as KTANTAN or PRINTCIPHER to protect it
against related key and slide attacks. The same S-box is used
for the datapath part and the key schedule part so a resource
sharing is possible between the two parts. Unfortunately, doing
so, an overhead is brought by adding 2-to-1 multiplexors (which
cost 2 GEs per bit in our ASIC technology). Moreover, it will
prevent from generating subkeys in parallel of cipher state
processing, so the number of needed round cycles will increase.
So, we decided in our benchmark implementation to implement
two sets of S-boxes, one for the cipher state and the other for
the subkeys generation. The differences between encryption
and decryption are minor, only PermutationLayer and
PermutationLFSM need to be reversed, so the overhead of
implementing decryption over encryption is negligible.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

12

B. Round-Wise Implementation of LILLIPUT

We give hereafter the implementation results of a straight-
forward round-wise implementation of LILLIPUT. It processes
64 bits of plaintext with an 80-bit key on 30 clock cycles.
Subkeys are computed on-the-fly, in parallel of the cipher
state processing. There is no resource sharing between the
cipher state and the key schedule processes. The S-boxes are
implemented in a Look-Up-Table way, so we let the compiler
do its own optimizations. Only the encryption process is
implemented.

We implemented LILLIPUT in VHDL and synthesized it
using a low-power High Vt 65 nm standard-cell library. We
used Synopsis Design Vision D-2010.03-SP5-2 for synthesis
and power simulation. The foundry typical values (of 1.2 V
for the core voltage and 25◦ for the temperature) were used.
In this straightforward implementation, non-scan flip-flops are
used. We applied priority optimizations on area.

Our straightforward round-wise low-power LILLIPUT occu-
pies 1832 GEs and has a simulated power of 0.9 µW. This
practical result can be compared with theory. Theoretically,
our LILLIPUT implementation needs 828 GEs to store both
the subkeys and the cipher state, 16× 23 = 368 GEs for the
S-boxes, ((21 + 8) × 4 + 20 + 5) × 2.25 = 317.25 GEs for
all the XORs, and (80 + 64) × 2 = 288 for all the 2-to-1
multiplexors (which selects between the encryption key (resp.
the plaintext) or the subkey (the cipher state)). So, we can
estimate (neglecting the cost of the finite state machine) that
our round-wise implementation of LILLIPUT needs at least
828 + 368 + 317.25 + 288 = 1801.25 GEs in total 2.

C. Round-Wise Implementations and Comparisons (Encryption
Only)

For doing a fair comparison, we need to implement the same
kind of hardware optimizations than LILLIPUT competitors.

A first possible optimization concerns scan flip-flops (instead
of standard ones) to save GEs. In fact, if we consider and
implement separately one 2-to-1 multiplexor followed by one
flip-flop, we have a hardware cost in our ASIC library of
2 + 5.75 GEs = 7.75 GEs. However, if we implement one
scan flip-flop (without “enable” signal) instead, which contains
intrinsically one 2-to-1 multiplexor, then it costs only 6 GEs,
which allows to save 1.75 GEs per 1-bit storage.

A second possible optimization has been proposed by the
designers of Piccolo [47]: they infer AND-NOR gates to
optimize XOR/XNOR gate count, which allows to save 0.25
GE per XOR.

In the following, we give implementation results of all the
LILLIPUT competitors taken into account these optimizations3.

A comparison with other ciphers which only implements
encryption follows in Table VI. We have only listed in this table
block ciphers with 80-bit key and 64-bit plaintext with hardware

2We know that the interface can have a huge impact on the size and the
performance of our implementation, but it must be noticed that all the state-
of-the-art lightweight block ciphers we cite in this article do not include the
area and latency overheads brought by the interface.

3We have decided to exclude LBlock from our comparisons since its
hardware advantage is due to a simpler architecture of its key schedule that
has some undesirable security properties [48].

implementations compliant with HF RFID tags constraints, a
reasonable throughput and no known attack on the key schedule.
The throughputs are given with a 100kHz clock frequency.

TABLE VI
COMPARISON WITH OTHER ROUND-WISE IMPLEMENTATIONS OF

LIGHTWEIGHT BLOCK-CIPHERS (ENCRYPTION ONLY).
Key Block Lat. Throughput Area Logic
Size Size (cycles) (kbit/s) (GEs) Process

PRESENT-80 80 64 31 200 1553 0.18µm
TWINE 80 64 36 178 1464 90nm

Piccolo-80 80 64 25 237 1496 0.13µm
LILLIPUT 80 64 30 213 1545 LP 65nm

Looking at the throughput, due to its smaller number of
rounds, LILLIPUT is faster than PRESENT-80 [39] and TWINE
[16]. It is only a little bit slower than Piccolo-80 [47].

Concerning the power consumption, comparisons are very
difficult first because we use low-power ASIC standard-cell
libraries and the others do not, second because the CMOS
technologies are not the same in the papers and third because
in most cases no average nor peak power consumption result
is given by the authors. We can only deduce that the power
consumption of our implementation of LILLIPUT is smaller
than PRESENT-80 (0.9 µW vs. 5). This result is mainly due
to the advanced CMOS library.

The following discussions will be only focused on area
comparisons. In short, the differences between LILLIPUT and
the other ciphers come first from the added cost of decryption
on top of encryption, and second our desire to build a strong
key schedule.

The only competitor of LILLIPUT which is bigger for
straightforward, round-wise encryption-only implementations
is PRESENT. However, LILLIPUT is more competitive when
both encryption and decryption modes are necessary.

D. Round-Wise Implementations and Comparisons (Encryption
+ Decryption)

A comparison with other ciphers which implements both
encryption and decryption modes follows in Table VII.

TABLE VII
COMPARISON WITH OTHER ROUND-WISE IMPLEMENTATIONS OF
LIGHTWEIGHT BLOCK-CIPHERS (ENCRYPTION + DECRYPTION).

Key Block Lat. Throughput Area Logic
Size Size (cycles) (kbit/s) (GEs) Process

PRESENT-80 80 64 31 200 2018 0.18µm
TWINE 80 64 36 178 1799 90nm

Piccolo-80 80 64 25 237 1634 0.13µm
LILLIPUT 80 64 30 213 1581 LP 65nm

LILLIPUT is then smaller than all its competitors where
both encryption and decryption are required in a mutual
authentication scenario. Since LILLIPUT has an involutive
structure, the addition of decryption mode over an encryption
one is almost free: only the inverses of PermutationLayer
and PermutationLFSM must be implemented in addition
(only cross wiring, so very little overhead) with scan flip-
flops which integrates 2-to-1 multiplexors. These latter will
only induce an overhead of 0.25 GE per stored bit, so
(64 + 80)× 0.25 = 36 GEs in total.

E. Serial Implementations and Comparisons (Encryption +
Decryption)

To decrease power consumption and area requirements,
implementations can also be serialized. Contrary to round-
wise implementations, serial implementations compute only a

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

13

fraction of one round in a clock cycle. This can allow lowering
the number of implemented arithmetic instances (e.g., SBoxes)
at the cost of additional control logic (multiplexers).

We have implemented a serialized version of LILLIPUT
which works as follows. It consists of 2 8×4-bit shift registers:
one containing the nibbles x15 ‖ x14 ‖ ... ‖ x8 (right shift) and
one containing x7 ‖ x6 ‖ ... ‖ x0 (left shift). In a first step, the
NonLinearLayer and LinearLayer are computed at the
same time to get the new values of x8, x9, ..., x14 before the
PermutationLayer computation (this latter is computed
in one clock cycle afterwards). In fact, it is computed at each
clock cycle, for i from 9 to 14: xi ← Fi−8(x15−i)⊕xi⊕x7 and
x8 ← F0(x7)⊕x8. An additional 4-bit register is then needed to
duplicate the storage of x7 value. In a second step, it is needed
to compute x15 value. It is first initialized from the first step
x15 ← F7(x0)⊕ x15 ⊕ x7. Then, the shift register containing
x7 ‖ x6 ‖ ... ‖ x0 initiates a new rotation phase to accumulate
at each clock cycle, for i from 1 to 6: x15 ← x15 ⊕ xi.

In summary, only 2 8×4-bit shift registers for the storage
of xi nibbles, one 4-bit register for x7 storage, one instance
of the S-box and 2 4-bit XORs have to be implemented in
our serialized design. One round is then computed in 17 clock
cycles and so an encryption takes 30× 17 = 510 clock cycles.

A comparison with Piccolo-80 (which is the only competitor
of LILLIPUT that provides results for both encryption and
decryption modes in a serialized way) follows in Table VIII.

TABLE VIII
COMPARISON WITH OTHER SERIALIZED IMPLEMENTATIONS OF

LIGHTWEIGHT BLOCK-CIPHERS (ENCRYPTION + DECRYPTION).
Key Block Lat. Throughput Area Logic
Size Size (cycles) (kbit/s) (GEs) Process

Piccolo-80 80 64 432 14.8 1103 0.13µm
LILLIPUT 80 64 510 12.5 1055 LP 65nm

The throughput of Piccolo-80 is better than LILLIPUT, but
since the decryption can be implemented almost for free,
LILLIPUT is smaller when implemented in a serialized way.

IX. CONCLUSION

In this article, we have introduced a generic matrix represen-
tation that captures most existing Generalized Feistel Networks.
We explained diffusion properties of those schemes through
this representation. We then introduced a new kind of schemes
called Extended Generalized Feistel Networks that adds a
diffusion layer to the classical GFNs. We finally instantiated
this class of schemes into a new lightweight block cipher
proposal called LILLIPUT and analyzed its security in generic
and instantiated models.

Concerning practical implementations of the lightweight
design, we have shown that LILLIPUT compares well to other
lightweight ciphers when implemented in a round-based fashion
and in a serialized way on a low-power 65 nm standard-
cell library. Thanks to its involutive nature, the overhead of
implementing both encryption and decryption on the same
circuit is small. LILLIPUT is adapted to the harsh constraints
of RFID systems.

Concerning future works related to hardware implementa-
tions, we will first evaluate the impact of using methods which
reduce glitches in the circuit (i.e. clock-gating). Concerning
software implementations, we want also to benchmark the

performances of LILLIPUT on 4-bit, 8-bit and 16-bit low-
power microcontrollers used in smart cards and wireless sensor
networks.

We finally encourage all the cryptographic community to
perform independent security analysis on LILLIPUT. Test
vectors are given in Appendix D.

ACKNOWLEDGEMENTS

The authors would like to thank Guillaume Reymond (CEA-
LETI, Gardanne, France) for providing his ASIC implemen-
tation results and Cédric Marchand (Université Jean-Monnet,
Saint-Étienne, France) for our fruitful discussions.

REFERENCES

[1] T. Berger, M. Minier, and G. Thomas, “Extended Generalized Feistel Net-
works using Matrix Representation,” in Selected Areas in Cryptography
- SAC 2013, ser. LNCS, vol. 8282. Springer, 2013, pp. 289–305.

[2] Data Encryption Standard, National Bureau of Standards, U. S. Depart-
ment of Commerce, 1977.

[3] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,
and T. Tokita, “Camellia: A 128-Bit Block Cipher Suitable for Multiple
Platforms - Design and Analysis,” in Selected Areas in Cryptography -
SAC 2000, ser. LNCS, vol. 2012. Springer, 2000, pp. 39–56.

[4] C. Adams and J. Gilchrist, “The CAST-256 Encryption
Algorithm,” Network Working Group, RFC 2612, june 1999,
http://tools.ietf.org/html/rfc2612.

[5] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A New Block
Cipher Suitable for Low-Resource Device,” in Cryptographic Hardware
and Embedded Systems - CHES 2006, ser. LNCS, vol. 4249. Springer,
2006, pp. 46–59.

[6] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-Bit
Blockcipher CLEFIA (Extended Abstract),” in Fast Software Encryption
- FSE 2007, ser. LNCS, vol. 4593. Springer, 2007, pp. 181–195.

[7] K. Nyberg, “Generalized Feistel Networks,” in Advances in Cryptology -
ASIACRYPT ’96, ser. LNCS, vol. 1163. Springer, 1996, pp. 91–104.

[8] SHS, “Secure Hash Standard,” in FIPS PUB 180-4, Federal Information
Processing Standards Publication, 2012.

[9] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. M. M. Jr, L. O’Connor, M. Peyravian, D. Stafford, and
N. Zunic, “MARS - an AES candidate,” NIST AES Proposal, 1999.

[10] Y. Zheng, T. Matsumoto, and H. Imai, “On the Construction of Block
Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses,”
in Advances in Cryptology - CRYPTO ’89, ser. LNCS, vol. 435. Springer,
1989, pp. 461–480.

[11] S. Moriai and S. Vaudenay, “On the Pseudorandomness of Top-Level
Schemes of Block Ciphers,” in Advances in Cryptology - ASIACRYPT
2000, ser. LNCS, vol. 1976. Springer, 2000, pp. 289–302.

[12] V. T. Hoang and P. Rogaway, “On Generalized Feistel Networks,” in
Advances in Cryptology - CRYPTO 2010, ser. LNCS, vol. 6223. Springer,
2010, pp. 613–630.

[13] M. Naor and O. Reingold, “On the Construction of Pseudorandom
Permutations: Luby-Rackoff Revisited,” J. Cryptology, vol. 12, no. 1, pp.
29–66, 1999.

[14] T. Suzaki and K. Minematsu, “Improving the Generalized Feistel,” in
Fast Software Encryption - FSE 2010, ser. LNCS, vol. 6147. Springer,
2010, pp. 19–39.

[15] S. Yanagihara and T. Iwata, “Improving the Permutation Layer of Type 1,
Type 3, Source-Heavy, and Target-Heavy Generalized Feistel Structures,”
IEICE Trans., vol. 96-A, no. 1, pp. 2–14, 2013.

[16] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “TWINE : A
Lightweight Block Cipher for Multiple Platforms,” in Selected Areas in
Cryptography - SAC 2012, ser. LNCS, vol. 7707. Springer, 2012, pp.
339–354.

[17] F. Arnault, T. P. Berger, M. Minier, and B. Pousse, “Revisiting LFSRs
for Cryptographic Applications,” IEEE Trans. on Info. Theory, vol. 57,
no. 12, pp. 8095–8113, 2011.

[18] J. Kim, S. Hong, and J. Lim, “Impossible differential cryptanalysis using
matrix method,” Discrete Mathematics, vol. 310, no. 5, pp. 988–1002,
2010.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

14

[19] L. Zhang and W. Wu, “Differential analysis of the Extended Generalized
Feistel Networks,” Inf. Process. Lett., vol. 114, no. 12, pp. 723–727,
2014.

[20] M. Luby and C. Rackoff, “How to construct pseudorandom permutations
from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2, pp.
373–386, 1988.

[21] H. Gilbert and M. Minier, “New Results on the Pseudorandomness of
Some Blockcipher Constructions,” in Fast Software Encryption - FSE
2001, ser. LNCS, vol. 2355. Springer, 2001, pp. 248–266.

[22] U. M. Maurer, “Indistinguishability of Random Systems,” in Advances
in Cryptology - EUROCRYPT 2002, ser. LNCS, vol. 2332. Springer,
2002, pp. 110–132.

[23] A. Mitsuda and T. Iwata, “Tweakable Pseudorandom Permutation from
Generalized Feistel Structure,” in Provable Security, Second International
Conference - ProvSec 2008, ser. LNCS, vol. 5324. Springer, 2008, pp.
22–37.

[24] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like
Cryptosystems,” in Advances in Cryptology - CRYPTO ’90, ser. LNCS,
vol. 537. Springer, 1990, pp. 2–21.

[25] M. Matsui, “Linear Cryptoanalysis Method for DES Cipher,” in Advances
in Cryptology - EUROCRYPT ’93, ser. LNCS, vol. 765. Springer, 1993,
pp. 386–397.

[26] F. Chabaud and S. Vaudenay, “Links Between Differential and Linear
Cryptoanalysis,” in Advances in Cryptology - EUROCRYPT ’94, ser.
LNCS, vol. 950. Springer, 1994, pp. 356–365.

[27] FIPS 197, “Advanced Encryption Standard,” Federal Information Pro-
cessing Standards Publication 197, 2001, u.S. Department of Com-
merce/N.I.S.T.

[28] L. R. Knudsen and D. Wagner, “Integral Cryptanalysis,” in Fast Software
Encryption - FSE 2002, ser. LNCS, vol. 2365. Springer, 2002, pp.
112–127.

[29] Y. Sasaki and L. Wang, “Meet-in-the-middle technique for integral attacks
against feistel ciphers,” in Selected Areas in Cryptography - SAC 2012,
ser. LNCS, vol. 7707. Springer, 2012, pp. 234–251.

[30] A. Biryukov and A. Shamir, “Structural Cryptanalysis of SASAS,” in
Advances in Cryptology - EUROCRYPT ’01, ser. LNCS, vol. 2045.
Springer, 2001, pp. 394–405.

[31] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack
Reduced to 31 Rounds Using Impossible Differentials,” in Advances in
Cryptology - EUROCRYPT ’99, ser. LNCS, vol. 1592. Springer, 1999,
pp. 12–23.

[32] Y. Luo, Z. Wu, X. Lai, and G. Gong, “A Unified Method for Finding
Impossible Differentials of Block Cipher Structures,” IACR Cryptology
ePrint Archive, vol. 2009, p. 627, 2009.

[33] J. Kim, S. Hong, J. Sung, C. Lee, and S. Lee, “Impossible Differential
Cryptanalysis for Block Cipher Structures,” in Progress in Cryptology -
INDOCRYPT 2003, ser. LNCS, vol. 2904. Springer, 2003, pp. 82–96.

[34] I. 9798-2, Information technology – Security techniques – Entity
authentication – Part 2: Mechanisms using symmetric encipherment
algorithms. ISO/IEC, 2008.

[35] T. P. Berger, M. Minier, and B. Pousse, “Software Oriented Stream
Ciphers Based upon FCSRs in Diversified Mode,” in Progress in
Cryptology - INDOCRYPT 2009, ser. LNCS, vol. 5922. Springer,
2009, pp. 119–135.

[36] C. D. Cannière, “Analysis and Design of Symmetric Encryption Algo-
rithms,” Ph.D. dissertation, Katholieke Universiteit Leuven, 2007.

[37] G. Leander and A. Poschmann, “On the Classification of 4 Bit S-Boxes,”
in WAIFI, ser. LNCS, vol. 4547. Springer, 2007, pp. 159–176.

[38] M.-J. O. Saarinen, “Cryptographic Analysis of All 4 x 4 - Bit S-Boxes,”
Cryptology ePrint Archive, Report 2011/218.

[39] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher,” in Cryptographic Hardware and Embedded Systems -
CHES 2007, ser. LNCS, vol. 4727. Springer, 2007, pp. 450–466.

[40] W. Wu and L. Zhang, “LBlock: A Lightweight Block Cipher,” in Applied
Cryptography and Network Security - ACNS 2011, ser. LNCS, vol. 6715,
2011, pp. 327–344.

[41] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK Families of Lightweight Block
Ciphers,” Cryptology ePrint Archive, Report 2013/404, 2013.

[42] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner,
and D. Whiting, “Improved Cryptanalysis of Rijndael,” in Fast Software
Encryption - FSE 2000, ser. LNCS, vol. 1978. Springer, 2001, pp.
213–230.

[43] E. Biham, “New Types of Cryptoanalytic Attacks Using related Keys
(Extended Abstract),” in Advances in Cryptology - EUROCRYPT ’93,

ser. Lecture Notes in Computer Science, vol. 765. Springer, 1993, pp.
398–409.

[44] A. Biryukov, D. Khovratovich, and I. Nikolic, “Distinguisher and Related-
Key Attack on the Full AES-256,” in Advances in Cryptology - CRYPTO
2009, ser. LNCS, vol. 5677. Springer, 2009, pp. 231–249.

[45] A. Biryukov and I. Nikolic, “Automatic Search for Related-Key Dif-
ferential Characteristics in Byte-Oriented Block Ciphers: Application
to AES, Camellia, Khazad and Others,” in Advances in Cryptology -
EUROCRYPT 2010, ser. LNCS, vol. 6110. Springer, 2010, pp. 322–344.

[46] A. Biryukov and D. Wagner, “Slide Attacks,” in Fast Software Encryption
- FSE ’99, ser. LNCS, vol. 1636. Springer, 1999, pp. 245–259.

[47] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai,
“Piccolo: An Ultra-Lightweight Blockcipher,” in Cryptographic Hardware
and Embedded Systems - CHES 2011, ser. LNCS, vol. 6917. Springer,
2011, pp. 342–357.

[48] C. Boura, M. Naya-Plasencia, and V. Suder, “Scrutinizing and Improving
Impossible Differential Attacks: Applications to CLEFIA, Camellia,
LBlock and Simon,” in Advances in Cryptology - ASIACRYPT 2014, ser.
LNCS, vol. 8873. Springer, 2014, pp. 179–199.

Thierry P. Berger received the Ph.D. degree and
the French Habilitation (Mathematics) from the
University of Limoges, France.

From 1992, he has been with the University of
Limoges. He is currently Professor in the Department
of Mathematics and Computer and the scientific
head of the Cryptology and Information Security
group. His research interests include finite algebra,
automorphism group of codes, links between coding
and cryptography, stream ciphers, pseudorandom
generators and dedicated block ciphers.

Julien Francq is born in 1982 in Lille (France).
After preliminary studies in Physics, Chemistry, Mi-
croelectronics and Control Systems, and a PhD thesis
in Computer Science domain obtained in 2009 in
Montpellier University (France), he is now working in
Airbus Defence & Space - CyberSecurity company as
a cryptography and key management expert. His main
research interest is the security and the efficiency of
(hardware/software) implementations of cryptography
against (mathematical/physical) attacks.

Marine Minier received the Ph.D. degree in 2002,
from the University of Limoges and the French Ha-
bilitation (Computer Sciences) from the University of
Lyon, France in 2012. In 2005, she joined the INSA
de Lyon (Institut National des Sciences Appliquées),
as an Assistant Professor, in the CITI laboratory, a
team working in telecommunications and the INRIA
Team Privatics in 2012. Her research interests include
Symetric Key Cryptography, Security in Sensor
Networks and Privacy.

Gaël Thomas defended his Ph.D. degree in June
2015, at the University of Limoges. His research
interests include Symetric Key Cryptography and
pseudo-random generators.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2468218, IEEE Transactions on Computers

15

APPENDIX A
UPDATING THE FOUR LFSRS USED IN THE KEY-SCHEDULE

MixingLFSM

PermutationLFSM

Y0Y1Y2Y3Y4

≫1

�3L0

MixingLFSM

PermutationLFSM

Y5Y6Y7Y8Y9

≪1

�3L1

MixingLFSM

PermutationLFSM

Y10Y11Y12Y13Y14

�3

≫1L2

MixingLFSM

PermutationLFSM

Y15Y16Y17Y18Y19

�3

≪1L3

Fig. 7. LFSRs L0 to L3 used in the key-schedule.

APPENDIX B
THE LILLIPUT DECRYPTION PROCESS

OneRoundEGFN−1

OneRoundEGFN−1

OneRoundEGFN−1

C

/64

/64

P

RK29/
32

RK28

RK0

...

NonLinearLayer

LinearLayer

PermutationLayer−1

NonLinearLayer

LinearLayer

Fig. 8. LILLIPUT Decryption

APPENDIX C
THE DECRYPTION KEY-SCHEDULE PROCESS

RoundFnLFSM29 Encryption Key Schedule

K

RoundFnLFSM−1

RoundFnLFSM−1

/80Y 29

ExtractRoundKey

ExtractRoundKey

ExtractRoundKey

RK29 /
32

RK28

RK0

...

MixingLFSM

PermutationLFSM−1

Fig. 9. LILLIPUT Decryption Key Schedule

APPENDIX D
TEST VESTORS

We provide the following test vectors given in little endian
and in hexadeximal for LILLIPUT:

input_message = 0x0000000000000000
KEY = 0x00000000000000000000
ciphertext = 0x5041b83331b27668

input_message = 0x0123456789abcdef
KEY = 0x0123456789abcdef0123
ciphertext = 0x9d60ea93c2c5a914

