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Abstract. This paper presents a new block cipher which offers good
encryption rate on any platform. It is particularly optimized for hard-
ware implementation where the expected rate is several Gbps on a small
dedicated chip working at 30MHz. Its design combines up to date state
of the art concepts in order to make it (hopefully) secure: diffusion net-
work based on the Fast Fourier Transform, multipermutations, highly
nonlinear confusion boxes.

Recent explosion of the telecommunication marketplace motivates the re-
search on encryption schemes. Trading security issues pushed the US government
to start the development of the Data Encryption Standard in the 70’s [1], all
telecommunication devices now need to be secured by encryption. Many attacks
have been proposed against DES including Biham and Shamir’s differential cryp-
tanalysis [5,6] and Matsui’s linear cryptanalysis [15,16]. Still the best practical
attack seems to be exhaustive search, which has become a real threat as shown
by the recent success of the RSA Challenge [31]. In this paper we propose a new
symmetric encryption scheme which has been designed in order to be efficient on
any platform, included cheap 8-bit microprocessors (e.g. smart cards), modern
32-bit microprocessors (SPARC, Pentium) and dedicated chips.

Notations

– || is the concatenation of two strings

– ⊕ is the bitwise exclusive or of two bitstrings (with equal lengths)

– Rl rotates a bitstring by one position to the left

– ∧ is the bitwise and of two bitstrings (with equal lengths)

– bitstrings are written in hexadecimal by packing four bits into one digit (for
instance, d216 denotes the bitstring 11010010)

– the numbering of bits in bitstrings is from right to left starting with 0 (i.e.
x0 denotes the last bit in x)

– bitstring and integers are converted in such a way that bn−1|| . . . ||b0 corres-
ponds to an integer bn−1.2

n−1 + . . .+ b0
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1 Definition of CS-Cipher

1.1 Use of CS-Cipher

CS-Cipher (as for the French “Chiffrement Symétrique”, Symmetric Cipher)
is a symmetric block cipher which can be used in any mode to encrypt a block
stream (e.g. the Cipher Block Chaining mode, see [2]). Basically, the CS-Cipher

encryption function maps a 64-bit plaintext block m onto a 64-bit ciphertext
block m′ by using a secret key k which is a bitstring with arbitrary length up to
128. The CS-Cipher decryption function maps the ciphertext onto the plaintext
by using the same secret key. We assume that m is represented by a bitstring

m = m63 . . .m1m0

and we similarly write

m′ = m′63 . . .m
′
1m
′
0.

We also assume that the string k is padded with trailing zero bits to get a length
of 128 bits

k = k127 . . . k1k0.

(A key k is therefore equivalent to another key k′ which consists in padding k
with a few zero bits.)

A key scheduling scheme first process the secret key k in order to obtain nine
64-bit subkeys k0, . . . , k8 iteratively in this order. If the secret key has to be used
several times, we recommend to precompute this sequence which may notably
increase the encryption rate.

The encryption algorithm processes iteratively each subkey in the right order
k0, . . . , k8 whereas the decryption algorithm processes them in the reverse order
k8, . . . , k0. We thus recommend to keep a storage of all subkeys for decryption
or to adapt the key scheduling scheme so that it can generate the subkeys in the
reverse order.

1.2 Key scheduling scheme

Let k be the padded 128-bit secret key. We first split the bitstring into two 64-bit
strings denoted k−2 and k−1 such that

k = k−1||k−2.

Those strings initialize a sequence k−2, . . . , k8 where k0, . . . , k8 are the nine 64-
bit subkeys to compute. The sequence comes from a Feistel scheme as

ki = ki−2 ⊕ Fci(k
i−1)

for i = 0, . . . , 8 where Fci is defined below (see Feistel [9]). Figure 1 illustrates
the key scheduling scheme together with the encryption itself.
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Fig. 1. Encryption process
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The Fci function maps a 64-bit string onto a 64-bit string by using a 64-bit
constant ci. In the definition of CS-Cipher, c0, . . . , c8 are defined as the first
bytes of the table of a permutation P which will be defined below:

c0 = 290d61409ceb9e8f16

c1 = 1f855f585b01398616

c2 = 972ed7d635ae171616

c3 = 21b6694ea572870816

c4 = 3c18e6e7faadb88916

c5 = b700f76f7384116316

c6 = 3f967f6ebf149dac16

c7 = a40e7ef6204a623016

c8 = 03c54b5a46a3446516.

Fci is defined by
Fci(x) = T (P 8(x⊕ ci)).

P 8 is defined by a byte-permutation P which maps an 8-bit string onto an 8-bit
string according to a table and T is a bit transposition. (Sofware implementation
will use a lookup table for P whereas hardware implementation may use the inner
structure of P which will be detailed below.)

Given the 64-bit string y = x⊕ ci, we split it into eight 8-bit strings denoted
y63..56, . . . , y7..0 such that y = y63..56|| . . . ||y7..0. We next apply the permutation
P byte-wise i.e. we compute

P 8(y63..56|| . . . ||y7..0) = P (y63..56)|| . . . ||P (y7..0).

The permutation T is the 8 × 8 bit-matrix transposition. More precisely,
given the 64-bit string z = P 8(x ⊕ ci), we first split it into eight 8-bit strings
z63..56, . . . , z7..0 as for y above and write it in a 8×8 bit-matrix fashion in such a
way that the first row is z63..56 and so on. The permutation T simply transposes
the matrix so that the first eight bits of T (z) are the first bits of z63..56, . . . , z7..0

in this order, the second eight bits are the seconds bits, and so on. Thus we have

T (z) = z63||z55|| . . . ||z7||z62||z54|| . . . ||z0.

Figure 2 illustrates how Fci works in the key scheduling scheme.

1.3 Encryption scheme

The encryption process is performed through eight rounds by using a round-
encryption function E which is a permutation on the set of all 64-bit strings. If
m denotes the 64-bit plaintext block and k0, . . . , k8 is the sequence of the 64-bit
subkeys, the ciphertext block is

k8 ⊕E(k7 ⊕ . . . E(k1 ⊕E(k0 ⊕m)) . . .)
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Fig. 2. The Fci function in the key scheduling scheme

as depicted on Figure 1.
The round-encryption function E is based on the Fast Fourier Transform

graph and a 16-bit to 16-bit mixing function M as depicted on Figure 3. It
also uses two 64-bit constants c and c′ defined by the binary expansion of the
mathematical constant

e =
∞∑
n=0

1

n!
= 2, b7e151628aed2a6abf7158809cf4f3c762e7160f16 . . .

Thus we define

c = b7e151628aed2a6a

c′ = bf7158809cf4f3c7.

More precisely, in each encryption round, we iterate the following scheme
three times

– we xor with a constant (which is successively the subkey ki, c and c′),
– we split the 64-bit string into four 16-bit strings and we apply M to each of

it, obtaining four 16-bit strings which combine into a 64-bit string,
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Fig. 3. One encryption round

– we split it again into eight 8-bit strings

r63..56||r55..48||r47..40||r39..32||r31..24||r23..16||r15..8||r7..0

and we change their order as

r63..56||r47..40||r31..24||r15..8||r55..48||r39..32||r23..16||r7..0.

The M function takes a 16-bit string x which is split into two 8-bit strings
xl||xr and computes M(x) = yl||yr by

yl = P (ϕ(xl)⊕ xr)

yr = P (Rl(xl)⊕ xr)

where ϕ is defined by

ϕ(xl) = (Rl(xl) ∧ 5516)⊕ xl

i.e.

ϕ(x7|| . . . ||x0) = x7||(x6 ⊕ x5)||x5||(x4 ⊕ x3)||x3||(x2 ⊕ x1)||x1||(x0 ⊕ x7).
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The M computation is depicted on Figure 4 (with the xor to its input which is
always performed).

The P byte-permutation (which is also used in the key scheduling scheme) is
defined by a three-round Feistel cipher represented on Figure 5: the 8-bit input
x is split into two 4-bit strings xl||xr, we compute successively

y = xl ⊕ f(xr)

zr = xr ⊕ g(y)

zl = y ⊕ f(zr)

where f and g are two special functions.
The function f is defined by the table

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

f(x) f d b b 7 5 7 7 e d a b e d e f

which comes from
f(x) = x ∧Rl(x).

The function g is defined by the table

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

g(x) a 6 0 2 b e 1 8 d 4 5 3 f c 7 9

which does not come from a simple expression.
Finally, the value of P (xy) is given as follows by the table of P .
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xy .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 29 0d 61 40 9c eb 9e 8f 1f 85 5f 58 5b 01 39 86

1. 97 2e d7 d6 35 ae 17 16 21 b6 69 4e a5 72 87 08

2. 3c 18 e6 e7 fa ad b8 89 b7 00 f7 6f 73 84 11 63

3. 3f 96 7f 6e bf 14 9d ac a4 0e 7e f6 20 4a 62 30

4. 03 c5 4b 5a 46 a3 44 65 7d 4d 3d 42 79 49 1b 5c

5. f5 6c b5 94 54 ff 56 57 0b f4 43 0c 4f 70 6d 0a

6. e4 02 3e 2f a2 47 e0 c1 d5 1a 95 a7 51 5e 33 2b

7. 5d d4 1d 2c ee 75 ec dd 7c 4c a6 b4 78 48 3a 32

8. 98 af c0 e1 2d 09 0f 1e b9 27 8a e9 bd e3 9f 07

9. b1 ea 92 93 53 6a 31 10 80 f2 d8 9b 04 36 06 8e

a. be a9 64 45 38 1c 7a 6b f3 a1 f0 cd 37 25 15 81

b. fb 90 e8 d9 7b 52 19 28 26 88 fc d1 e2 8c a0 34

c. 82 67 da cb c7 41 e5 c4 c8 ef db c3 cc ab ce ed

d. d0 bb d3 d2 71 68 13 12 9a b3 c2 ca de 77 dc df

e. 66 83 bc 8d 60 c6 22 23 b2 8b 91 05 76 cf 74 c9

f. aa f1 99 a8 59 50 3b 2a fe f9 24 b0 ba fd f8 55

For instance, we have P (26) = b8 since f(6) = 7, 2⊕7 = 5, g(5) = e, 6⊕e = 8,
f(8) = e and finally 5⊕ e = b.

1.4 Decryption scheme

Decryption is performed by iterating a decryption-round function represented
on Figure 6.
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Fig. 6. One decryption round

Details of the decryption are left to the reader. We simply observe that
(xl||xr) = M−1(yl||yr) can be computed by

xl = ϕ′(P (yl)⊕ P (yr))

xr = Rl(xl)⊕ P (yr)

where
ϕ′(x) = (Rl(x) ∧ aa16)⊕ x.

1.5 Test values

As an example we encrypt the plaintext 0123456789abcdef16 with the secret
key 0123456789abcdeffedcba987654321016. The subkeys sequence is

k−2 = fedcba987654321016

k−1 = 0123456789abcdef16

k0 = 45fd137a4edf9ec416

k1 = 1dd43f03e6f7564c16

k2 = ebe26756de9937c716
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k3 = 961704e945bad4fb16

k4 = 0b60dfe9eff473d416

k5 = 76d3e7cf52c466cf16

k6 = 75ec8cef767d3a0d16

k7 = 82da3337b598fd6d16

k8 = fbd820da8dc8af8c16

For instance, the first generated subkey k0 = 45fd137a4edf9ec416 is

k0 = k−2 ⊕ T (P 8(k−1 ⊕ 290d61409ceb9e8f16))

= k−2 ⊕ T (b711fa89ae0394e416)

= k−2 ⊕ bb21a9e2388bacd416.

The messages which enter into each round are

m0 = 0123456789abcdef16

m1 = c3feb96c0cf4b64916

m2 = 3f54e0c8e61a84d116

m3 = b15cb4af3786976e16

m4 = 76c122b7a562ac4516

m5 = 21300b6ccfaa08d816

m6 = 99b8d8ab9034ec9a16

m7 = a2245ba3697445d216

and the ciphertext is 88fddfbe954479d716. In the first round, the message m0

is transformed though three layers into m1. The intermediate results between
the layers are d85c19785690b0e316 and 0f4bfb9e2f8ac7e216. For instance, in
the first layer we take m0, xor it with k0, apply M , permute the bytes and get
d85c19785690b0e316.

As an implementation test, we mention that if we iterate one million times
the encryption on the all-zero bitstring with the previous key, we obtain the final
ciphertext fd5c9c6889784b1c16.

2 Design arguments

The Fast Fourier Transform used in the round-encryption function E has been
used in several cryptographic designs including Schnorr’s FFT-Hashing [22], FFT
Hash II [23], Schnorr and Vaudenay’s Parallel FFT-Hashing [24], and Massey’s
SAFER [13,14]. This graph has been proved to have very good diffusion proper-
ties when done twice (see [25,26,30]).

The M structure implements a multipermutation as defined by Schnorr and
Vaudenay (see [25,29,30]). In this case, it means that M is a permutation over
the set of all 16-bit strings, and that fixing any of the two 8-bit inputs arbitrarily
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makes both 8-bit outputs be permutations of the other one. This is due to a very
particular property of ϕ, namely that both ϕ and x 7→ ϕ(x) ⊕ Rl(x) (which is
in fact ϕ′) are permutations. Actually, ϕ and ϕ′ are linear involutions.

Those properties make E be what we call a mixing function, i.e. such that
if we arbitrarily fix seven of the eight inputs, all outputs are permutation of the
remaining free input. This performs a good diffusion.

The best general attack methods on block ciphers have been introduced by Gil-
bert, Chassé, Tardy-Corfdir, Biham, Shamir and Matsui (see [11,28,5,6,15,16,10]).
They are now known as differential and linear cryptanalysis. We know study how
CS-Cipher has been protected against it.

The permutation P has been chosen to be an nonlinear involution in the
sense that both differential and linear cryptanalysis are hard. Nonlinearity has
one measure corresponding to differential cryptanalysis (which has been defined
by Nyberg [19]) and one measure corresponding to linear cryptanalysis (which
has been defined by Chabaud and Vaudenay [7]). Here we use the formalism
introduced by Matsui [17]:

DPmax(f) = max
a6=0,b

Pr
X uniform

[f(X ⊕ a)⊕ f(X) = b]

LPmax(f) = max
a,b6=0

(
2 Pr
X uniform

[X · a = f(X) · b]− 1

)2

.

The functions f and g are such that DPmax(f) ≤ 2−2 and LPmax(f) ≤ 2−2. If
the Theorem of Aoki and Ohta [3] (which generalizes the Theorem of Nyberg and
Knudsen [20]) were applicable in this setting, we would then obtain DPmax(P ) ≤
2−4 and LPmax(P ) ≤ 2−4. Both properties are however still satisfied as the
experiment shows. From [19,7] it is known that for any function f on the set
of all n-bit strings we have DPmax(f) ≥ 21−n and LPmax(f) ≥ 21−n, but it
is conjectured that 22−n is a better bound for even n (see Dobbertin [8] for
instance). So our functions are reasonably nonlinear. Since it is well known that
the heuristic complexity of differential or linear cryptanalysis is greater than the
inverse of the product of the DPmax or LPmax of all active P boxes (see for
instance Heys and Tavares [12]), having mixing functions makes at least five P
box per round to be active, so no four rounds of CS-Cipher have any efficient
differential or linear characteristic.

3 Implementation

In any kind of implementation, the key scheduling scheme is assumed to be
precomputed. This part of CS-Cipher has not be designed to have special
implementation optimization. The authors believe that every time one changes
the secret key, one has to perform expensive computations (such as asymmetric
cryptography, key exchange protocol or key transfer protocols) so optimizing the
precomputation of the subkey sequence is meaningless. In the following Sections
we only discuss implementation of the encryption (or decryption) scheme.
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3.1 VLSI implementation

CS-Cipher is highly optimized for VLSI implementations. It may be noticed
that the g function has been designed to get a friendly boolean circuit imple-
mentation. Actually, Figure 7 illustrates a cheap nand-circuit with depth 4 and
only 16 nand gates.

We propose two possible easy implementations. In the first one, we really
implement one third of a single round encryption. It has two 64-bit input re-
gisters and one 64-bit output register. It is easy to see that an encryption can
be performed by iterating this circuit 24 times and loading the subkey sequence
k0, c, c′, k1, c, c′, . . . Straightforward estimates shows this circuit requires 1216
nand-gates with depth 26. This implementation can be added in any micropro-
cessor within less than 1mm2 in order to get a simple microcoded encryption
instruction. One 30MHz-clock cycle is far enough to compute one layer, thus
one 64-bit encryption requires 24 clock cycles, which leads to a 73Mbps, which
is quite fast for such a cheap technology.

The second implementation consists in making a dedicated chip which con-
sists of 24 times the previous circuit in a pipeline architecture. We estimate we
need 15mm2 in order to implement a 30000 nand-gate circuit which performs a
64-bit encryption within one 30MHz-clock cycle, which leads to an encryption
rate of 2Gbps. This can be used to encrypt ATM network communications or
PCI bus.

layer4 : g0 = g4ng5 g1 = g6ng7 g2 = g8ng9 g3 = g10ng11

layer3 : g5 = g6ng14 g8 = g17ng4 g9 = g7ng14 g10 = g6ng16

layer2 : g6 = g14ng12 g7 = g15ng16 g11 = g13ng4 g17 = g15ng19

layer1 : g4 = g12ng13 g14 = g18ng18 g15 = g18ng12 g19 = g16ng13

layer0 : g12 g13 g16 g18

Input : g16g13g18g12

Output : g0g1g2g3

Fig. 7. Implementation of g

Those results can be compared to MISTY which has been implemented by
Mitsubishi. In Matsui [18], this chip is specified to require 65000 gates, working
at 14MHz and encrypting at 450Mbps.

3.2 Software implementation on modern microprocessors

A straightforward non-optimized implementation of CS-Cipher in standard C
on a Pentium 133MHz (see Appendix) gives an encryption rate of 2.1Mbps which
is reasonably fast compared to similar implementations of DES.
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Another (non-optimized) implementation in assembly code enables the Pen-
tium to perform a 64-bit encryption within 973 clock cycles, which leads to
8.34Mbps working at 133MHz.

An evaluation similar to the VLSI-implementation estimates shows that the
number of “usual” boolean gate (xor, and, or not) required to implement 64 pa-
rallel 64-bit encryptions using Biham’s bit-slice trick on a 64-bit microprocessor
is 11968, which is substantially less than Biham’s implementation of DES which
requires about 16000 instructions (see [4]). Therefore, if we use a 300MHz Alpha
microprocessor which requires .5cycles per instructions (as in [4]), we obtain an
encryption rate of about 196Mbps.

3.3 Software implementation on 8-bit microprocessors

An implementation has been done for a cheap smart card platform. A compact
6805 assembly code of roughly 500 bytes can encrypt a 64-bit string in its buffer
RAM by using only 6 extra byte-registers within 12633 clock cycles. This means
that a cheap smart card working at 4MHz can encrypt within 3,16ms (i.e. at a
19,8Kbps rate), which is better than optimized implementations of DES[1]. This
implementation of CS-Cipher can still be optimized.

platform clock frequency encryption rate note

VLSI 1216nand 1mm2 30MHz 73Mbps estimate

VLSI 30000nand 15mm2 30MHz 2Gbps estimate
standard C 32bits 133MHz 2Mbps see Appendix
bit slice (Pentium) 133MHz 11Mbps estimate
bit slice (Alpha) 300MHz 196Mbps estimate
Pentium assembly code 133MHz 8Mbps non-optimized
6805 assembly code 4MHz 20Kbps non-optimized

Fig. 8. Implementations of CS-Cipher

4 Conclusion

CS-Cipher has been shown to offer quite fast encryption rates on several kinds
of platforms, which is suitable for telecommunication applications. Figure 8 sum-
merizes the implementation results. Its security is based on heuristic arguments.

All attacks are welcome...
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Appendix

Here is a sample implementation of the heart of CS-Cipher. The procedure
takes plaintext block m and a precomputed subkey sequence k (as a 9× 8 bytes
array). This program is highly optimizable.

typedef unsigned char uint8;
#define CSC_C00 0xb7
#define CSC_C01 0xe1
#define CSC_C02 0x51
#define CSC_C03 0x62
#define CSC_C04 0x8a
#define CSC_C05 0xed
#define CSC_C06 0x2a
#define CSC_C07 0x6a
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#define CSC_C10 0xbf
#define CSC_C11 0x71
#define CSC_C12 0x58
#define CSC_C13 0x80
#define CSC_C14 0x9c
#define CSC_C15 0xf4
#define CSC_C16 0xf3
#define CSC_C17 0xc7
uint8 tbp[256]={

0x29,0x0d,0x61,0x40,0x9c,0xeb,0x9e,0x8f,
0x1f,0x85,0x5f,0x58,0x5b,0x01,0x39,0x86,
0x97,0x2e,0xd7,0xd6,0x35,0xae,0x17,0x16,
0x21,0xb6,0x69,0x4e,0xa5,0x72,0x87,0x08,
0x3c,0x18,0xe6,0xe7,0xfa,0xad,0xb8,0x89,
0xb7,0x00,0xf7,0x6f,0x73,0x84,0x11,0x63,
0x3f,0x96,0x7f,0x6e,0xbf,0x14,0x9d,0xac,
0xa4,0x0e,0x7e,0xf6,0x20,0x4a,0x62,0x30,
0x03,0xc5,0x4b,0x5a,0x46,0xa3,0x44,0x65,
0x7d,0x4d,0x3d,0x42,0x79,0x49,0x1b,0x5c,
0xf5,0x6c,0xb5,0x94,0x54,0xff,0x56,0x57,
0x0b,0xf4,0x43,0x0c,0x4f,0x70,0x6d,0x0a,
0xe4,0x02,0x3e,0x2f,0xa2,0x47,0xe0,0xc1,
0xd5,0x1a,0x95,0xa7,0x51,0x5e,0x33,0x2b,
0x5d,0xd4,0x1d,0x2c,0xee,0x75,0xec,0xdd,
0x7c,0x4c,0xa6,0xb4,0x78,0x48,0x3a,0x32,
0x98,0xaf,0xc0,0xe1,0x2d,0x09,0x0f,0x1e,
0xb9,0x27,0x8a,0xe9,0xbd,0xe3,0x9f,0x07,
0xb1,0xea,0x92,0x93,0x53,0x6a,0x31,0x10,
0x80,0xf2,0xd8,0x9b,0x04,0x36,0x06,0x8e,
0xbe,0xa9,0x64,0x45,0x38,0x1c,0x7a,0x6b,
0xf3,0xa1,0xf0,0xcd,0x37,0x25,0x15,0x81,
0xfb,0x90,0xe8,0xd9,0x7b,0x52,0x19,0x28,
0x26,0x88,0xfc,0xd1,0xe2,0x8c,0xa0,0x34,
0x82,0x67,0xda,0xcb,0xc7,0x41,0xe5,0xc4,
0xc8,0xef,0xdb,0xc3,0xcc,0xab,0xce,0xed,
0xd0,0xbb,0xd3,0xd2,0x71,0x68,0x13,0x12,
0x9a,0xb3,0xc2,0xca,0xde,0x77,0xdc,0xdf,
0x66,0x83,0xbc,0x8d,0x60,0xc6,0x22,0x23,
0xb2,0x8b,0x91,0x05,0x76,0xcf,0x74,0xc9,
0xaa,0xf1,0x99,0xa8,0x59,0x50,0x3b,0x2a,
0xfe,0xf9,0x24,0xb0,0xba,0xfd,0xf8,0x55,

};
void enc_csc(uint8 m[8],uint8* k) {

uint8 tmpx,tmprx,tmpy;
int i;
#define APPLY_M(cl,cr,adl,adr) \

tmpx=m[adl]^cl; \
tmprx=(tmpx<<1)^(tmpx>>7); \
tmpy=m[adr]^cr; \
m[adl]=tbp[(tmprx&0x55)^tmpx^tmpy]; \
m[adr]=tbp[tmprx^tmpy];

for(i=0;i<8;i++,k+=8) {
APPLY_M(k[0],k[1],0,1)
APPLY_M(k[2],k[3],2,3)
APPLY_M(k[4],k[5],4,5)
APPLY_M(k[6],k[7],6,7)
APPLY_M(CSC_C00,CSC_C01,0,2)
APPLY_M(CSC_C02,CSC_C03,4,6)
APPLY_M(CSC_C04,CSC_C05,1,3)
APPLY_M(CSC_C06,CSC_C07,5,7)
APPLY_M(CSC_C10,CSC_C11,0,4)
APPLY_M(CSC_C12,CSC_C13,1,5)
APPLY_M(CSC_C14,CSC_C15,2,6)
APPLY_M(CSC_C16,CSC_C17,3,7)

}
for(i=0;i<8;i++) m[i]^=k[i];

}
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