2011 International Symposium on Empirical Software Engineering and Measurement

One Technique is Not Enough:

A Comparison of Vulnerability Discovery Techniques

Andrew Austin and Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, USA
andrew_austin@ncsu.edu, williams@csc.ncsu.edu

Abstract—Security vulnerabilities discovered later in the
development cycle are more expensive to fix than those
discovered early. Therefore, software developers should strive
to discover vulnerabilities as early as possible. Unfortunately,
the large size of code bases and lack of developer expertise can
make discovering software vulnerabilities difficult. To ease this
difficulty, many different types of techniques have been
devised to aid developers in vulnerability discovery. The goal of
this research is to improve vulnerability detection by comparing
the effectiveness of vulnerability discovery techniques and to
provide specific recommendations to improve vulnerability
discovery with these techniques. We conducted a case study on
two electronic health record systems to compare four discovery
techniques: systematic and exploratory manual penetration
testing; static analysis; and automated penetration testing. In
our case study, we found empirical evidence that no single
technique discovered every type of vulnerability. We
discovered almost no individual vulnerabilities with multiple
discovery techniques. We also found that systematic manual
penetration testing found the most design flaws, while static
analysis found the most implementation bugs. Finally, we
found the most effective vulnerability discovery technique in
terms of vulnerabilities discovered per hour was automated
penetration testing. These results suggest that if one has limited
time to preform vulnerability discovery one should conduct
automated penetration testing to discover implementation bugs
and systematic manual penetration testing to discover design
flaws.

Keywords-security, vulnerability, static analysis, penetration
testing, blackbox testing, whitebox testing

L INTRODUCTION

Security vulnerabilities discovered later in the
development cycle are more expensive to fix than those
discovered early [1]. Therefore, software developers should
strive to discover vulnerabilities as early as possible in the
development lifecycle. Unfortunately, modern code bases are
increasingly growing, and finding security vulnerabilities is
hard. Difficulty in finding security vulnerabilities is further
compounded by software developers potentially lacking
security expertise. Many tools and techniques have been
created to help ease the difficulty in discovering
vulnerabilities. Not all tools or techniques are the same, so
developers are left to decide how they can best discover
vulnerabilities on their own.

978-0-7695-4604-9/11 $26.00 © 2011 IEEE
DOI 10.1109/ESEM.2011.18

97

In his book, Software Security: Building Security In,
Gary McGraw draws on his experience as a security
researcher and claims [2]: "Security problems evolve, grow,
and mutate, just like species on a continent. No one
technique or set of rules will ever perfectly detect all security
vulnerabilities.” Instead, he advocates using a combination
of penetration testing (with the aid of a tool) and static
analysis vulnerability discovery techniques throughout the
software development lifecycle. McGraw’s claim is not
substantiated with empirical evidence. Empirical evidence
may affirm the experience of McGraw, or instead show that
security vulnerabilities are better discovered by other tools or
techniques. The goal of this research is to improve
vulnerability detection by comparing the effectiveness of
vulnerability discovery techniques and to provide specific
recommendations to improve vulnerability discovery with
these techniques.

To accomplish our research goal, we conducted a case
study to examine vulnerability discovery techniques on two
web-based electronic health record systems: Tolven
Electronic Clinician Health Record (eCHR) ' and
OpenEMR?. These two systems are currently used within the
United States to store patient records. In our case study, we
conducted exploratory and systematic manual penetration
testing; static analysis; and automated penetration testing.
We classified the vulnerabilities found as either
implementation bugs or design flaws. We then manually
analyzed each discovered vulnerability to determine if the
same vulnerability could be found by multiple vulnerability
discovery techniques.

The contributions of this paper are as follows:

e A comparison of the type and number of
vulnerabilities found with exploratory manual
penetration testing, systematic manual penetration
testing, static analysis, and automated penetration

testing.
e Empirical evidence indicating which discovery
techniques should be wused to find both

implementation- and design-level vulnerabilities.
e An evaluation of the efficiency of each vulnerability

discovery technique based on the metric
vulnerabilities discovered per hour.
! http://sourceforge.net/projects/tolven/
? http://www.oemr.org/
|IEEE
@ computer
® psouety

The rest of the paper is organized as follows; Section II
provides background information requiring familiarity to
understand the paper. Section III discusses related academic
work. Section IV describes our case study and its
methodology. Section V gives our study results. Section VI
discusses our results and provides analysis. Section VII
discusses our limitations. Section VIII summarizes our
conclusions. Finally, Section IX talks about possible future
work.

II.

This section describes the terminology used throughout
the paper and gives background information on the types of
security issues one may encounter when doing security
analysis.

BACKGROUND

A. Vulnerability Discovery Techniques

Penetration testing is testing that is identifying “the
unspecified and insecure side effects of ‘correct’ application
functionality [3]”. Penetration testing is not focused on
verifying the program specification. Manual penetration
testing is penetration testing performed without the aid of an
automated tool [4]. We make the distinction between two
types of manual penetration testing: exploratory manual
testing and systematic testing. Exploratory manual
penetration testing is manual penetration testing without a
test plan. Instead, exploratory manual penetration testing is a
security evaluation based on the tester’s instinct and prior
experience. Systematic manual penetration testing is
testing that follows a predefined test plan rather than
exploration. To reduce testing time and take advantage of
repetitive nature of testing, tools have been devised to
automatically perform many of the same tasks that one does
in manual penetration testing. These tools are called
automated penetration testing tools [4].

Rather than looking at the security of an application from
a user perspective, tools can also look for security issues by
examining the code directly. Automated Static analysis
examines software in an abstract fashion by evaluating the
code without executing it with the aid of a tool [5] [6]. This
examination can be performed by evaluating either source
code, machine code, or object code of an application to
obtain a list of potential vulnerabilities found within the
source. Static analysis can be performed using a variety of
techniques, from scanning with simple patterns [5], data flow
analysis [7], to even model checking [8].

Techniques for discovering software vulnerabilities are
not perfect and they sometimes incorrectly label code as
containing a fault. This mislabeling is called a false
positive, as opposed to a true postive, when faults are
correctly identified. Therefore, developers must manually
examine each potential fault reported by these tools to
determine if they are false positives. We call potential faults
that have security implications potential vulnerabilities.

Security faults can be divided into two groups: design
flaws and implementation bugs. Design flaws are high-level
problems associated with the architecture of the software.
Implementation bugs are code-level software problems [2].

98

We will identify these classes each time we uncover new
security vulnerabilities in this paper.

B. Vulnerability Types

The following implementation bug descriptions are based
on their Common Weakness Enumeration descriptions?®.
cross-Site scripting (XSS) (CWE-79) vulnerabilities occur
when input is taken from a user and not correctly validated,
allowing for malicious code to be injected into a web
browser and subsequently displayed to the end user. SQL
Injection (CWE-89) vulnerabilities occur when user input is
not correctly validated and the input is directly used in a
database query. Not validating the input allows malicious
user to directly manipulate the data returned by the database
to potentially obtain sensitive information. A dangerous
function (CWE-242) vulnerability occurs when a method is
used within code that is inherently insecure or deprecated.
Such methods or functions should not be used because
attackers can use common knowledge of their weakness to
exploit the application. A path manipulation (CWE-22)
vulnerability occurs when users are allowed to view files or
folders outside of those intended by the application. An
error information leak (CWE-209) vulnerability occurs
when information or an error is displayed directly to a user.
These errors can contain sensitive information or even
authentication credentials to allow attackers greater access
to the application. A failure to set the HTTPOnly attribute
allows for non-http access to browser cookies. Such a
vulnerability allows client site code to access the cookies
particularly allowing session information or other sensitive
data to be stolen in cross site scripting or phishing attacks
[9]. A hidden field manipulation (CWE-472) vulnerability
occurs when data in hidden fields are not properly validated
and the field is implicitly trusted. Trusting this form of user
input can lead to issues such as SQL injection and cross site
scripting, or can allow inaccurate information to be inserted
into the database. A command injection (CWE-78)
vulnerability occurs when input from the user is directly
executed. This vulnerability allows malicious users to
directly execute commands on the host as a trusted user.

There are also several vulnerabilities that are design flaws
[10]. We will examine several. A nonexistent access
control (CWE-285) vulnerability occurs when access to a
particular URL is not protected, granting anyone, including
malicious users access. A lack of auditing (CWE-778)
vulnerability occurs when a critical event is not logged or
recorded. A Trust Boundary Violation (CWE-501) occurs
when trusted and untrusted data is mixed in a data structure.
Dangerous File Upload (CWE-434) can occur when the
system is not properly designed to handle potentially
malicious files.

3 The Common Weakness Enumeration is a community developed
dictionary of software weakness types [10].

II1.

Researchers have already examined some differences
between vulnerability discovery techniques. Autunes and
Vieira compared the effectiveness of static analysis and
automated penetration testing in detecting SQL injection
vulnerabilities in web services [11]. They found more SQL
injection vulnerabilities with static analysis than with
automated penetration testing. They also found that both
static analysis and automated penetration testing had a large
false positive rate. In our work we focus on more than just
static analysis and automated penetration testing as
discovery techniques. We also look at more of a variety of
vulnerabilities to compare techniques.

Research by Doupé, et al. [12] evaluated 11 automated
penetration testing tools. In their evaluation they found that
modern automated penetration tools had trouble accessing
all resources provided by an application due to weaknesses
in crawling algorithms. Automated penetration testing tools
particularly had trouble with Flash and JavaScript.
Additionally, they found that some types of vulnerabilities
such as command injection, file inclusion and cross site
scripting via Flash were difficult for automated penetration
tools to find.

Suto [13] [14] conducted two studies in which he
evaluated seven commercial automated penetration testing
tools. In his studies, he found that tools missed many
vulnerabilities because they could not properly reach all
pages of the web applications. He also found that most
commercial tools had a large number of false positives.

Baca et al. [15] found that the average developers were
unable to determine if a static analysis alert was a security
issue. They found that having experience with static analysis
doubled the number of correct true positive classifications,
while having both security experience and static analysis
tripled correct classification over average developers.

Rutar, et al. [16] conducted a case study on five static
analysis tools comparing their effectiveness. They found
that the tools discovered non-overlapping bugs that were not
found by the other tools.

McGraw and Steven [17] published an article on the
pitfalls of comparing static analysis tools. They state that
two tools will perform differently on code bases of the same
language because of coding style and internal rules used by
the tools. They also claim that tool operators and
configuration can greatly influence vulnerability discovery.

Much work in the past pertaining to manual penetration
testing has focused on the lack of scientific process in
penetration testing. Several researchers have concluded that
manual penetration testing is more of an art than a science
[18] [19]. As a result, the penetration tester’s creativity and
skill greatly influence the results of a successful manual
penetration test.

RELATED WORK

IV. CASE STUDY

This section describes the subjects chosen for our case
study as well as our methodology.

99

A. Subject Selection

Due to legislative requirements in the United States,
development and adoption of electronic health record (EHR)
systems has suddenly increased. To help our case study
generalize to large real world systems, we have chosen two
open source EHR systems as subjects for study. The two
systems we studied were Tolven eCHR and OpenEMR.

Tolven eCHR is an open source EHR system. The
project has 12 contributing developers, and commercial
support is provided by Tolven, Inc. Some additional
characteristics of Tolven eCHR are provided in Table I
OpenEMR is an open source EHR system. The project has a
community of 17 contributing developers and at least 23
organizations providing commercial support within the
United States [20]. Additional characteristics of OpenEMR
are provided in Table I.

TABLE L. CHARACTERISTICS OF TOLVEN ECHR AND OPENEMR
Tolven OpenEMR
eCHR

Language Java PHP

. RC1 3.1.0
Version Evaluated (5/28/2010) | (8/29/2009)
Lines of Code (counted by CLOC1.08%) 466,538 277,702

B. Case Study Methodology
We first collected the vulnerabilities that each

vulnerability discovery technique discovered. We then
classified whether each of the vulnerabilities were true or
false positives. The next five subsections examine the steps
of our case study methodology in detail.

1) Exploratory Manual Penetration Testing

To keep other discovery techniques from biasing our
exploratory manual penetration testing, we conducted
exploratory manual penetration testing prior to conducting
vulnerability discovery with other techniques. To perform
exploratory manual penetration testing, the first author
manually attempted to exploit various components of the test
subjects in an ad-hoc manner. The exploratory manual
penetration testing was conducted by authenticating with the
target application and manually navigating through each
page trying various attacks. The first author drew on his
application security experience and his knowledge of the
target applications to look for a variety of vulnerabilities in
the system. The first author used supplemental tools like web
browsers, JavaScript debuggers (e.g. Firebug®) and http
proxies (e.g. WebScarab®) for viewing raw http requests.

2) Static Analysis

To perform static analysis, we used Fortify 360 v.2.6".
Fortify 360 supports analysis of a variety of languages
including both PHP and Java. To evaluate these two

* http://cloc.sourceforge.net/

* http://getfirebug.com/

¢ http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
7 https://www.fortify.com/products/fortify360/index.html

languages we chose the options “Show me all issues that
have security implications” and “No I don’t want to see code
quality issues”. Fortify 360 generated a list of potential
vulnerabilities when scanning was complete.

3) Automated Penetration Testing

To conduct automated penetration testing, we used IBM
Rational AppScan 8.0°. Rational AppScan conducts a black
box security evaluation of the website by crawling the web
application and attempting a variety of attacks. To use
AppScan, we provided authentication credentials to the
systems so that the tool could login to both our test subjects.
We left the default scanning options selected for our
automated penetration testing. AppScan generated a list of
potential vulnerabilities when scanning was complete.

4) Systematic Manual Penetration Testing

One vulnerability discovery method, proposed by Smith
and Williams [21], suggests using a software systems
functional requirement specification’s English statements to
systematically generate security tests to surface security
vulnerabilities. The authors created these tests by breaking
the systems functional requirement statements into distinct
phrase types such “Action Phrase” and “Object Phrase.”
Using these two phrases the authors then propose a
systematic method to generate security tests using common
patterns. Since the authors have provided a detailed test plan
[21] and have run their test plan on our subjects, we will use
the results they obtained for our study.

5) False Positive Classification

Both static analysis and automated penetration testing
generate a list of potential vulnerabilities that must be
classified as either true or false positives. To perform this
classification, the first author manually examined each
individual vulnerability. For static analysis, we examined
the line of code classified as vulnerable and also examined
related methods. For automated penetration testing, false
positive classification was performed by looking at the raw
HTTP requests generated and confirming if the attempted
exploit was actually visible in the raw output or accepted as
trusted input. For both tools, sometimes the first author had
to attempt to manually recreate the attack through the
application to confirm whether the potential vulnerability
was a true positive.

V. RESULTS

This section describes our results.

A. Exploratory Manual Penetration Testing

For Tolven eCHR, the first author spent approximately
fifteen man-hours preforming exploratory = manual
penetration testing. After fifteen hours of evaluation, we
were unable to find any security issues in Tolven eCHR
based on our exploratory manual penetration testing. To
compare this discovery technique with other techniques, we
computed an efficiency metric, vulnerabilities discovered per

% http://www-01.ibm.com/software/awdtools/appscan/

100

hour. Since we discovered no vulnerabilities in Tolven
eCHR with exploratory manual testing, our vulnerabilities
per hour metric is 0.

In prior work [22], we conducted an extensive security
evaluation of OpenEMR with a team of six researchers and
30 man-hours of evaluation. Because discovery of
vulnerabilities can signal the penetration tester to other likely
vulnerabilities, we continued our evaluation of OpenEMR
for a longer period than Tolven eCHR. During our manual
testing we were able to find 12 security vulnerabilities
throughout the OpenEMR application. Fig. 1 provides a
breakdown of the types of vulnerabilities discovered.

Malicious File
Session Hijacking

SQL Injection

4

B Number of Vulnerabilities

Figure 1. Vulnerabilities Found In OpenEMR with Exploratory Manual

Penetration Testing.

Because all of the 12 vulnerabilities discovered were
discovered manually and we were able to exploit each one,
they are all considered true positives. All of the bugs found
with exploratory manual penetration testing were
implementation bugs with the exception of the malicious file
upload bug, which was a design flaw. All of the
implementation bugs found with exploratory manual
penetration testing were caused by lack of input validation.
Since exploratory manual penetration testing found 12
vulnerabilities in 30 hours, the efficiency metric is 0.40
vulnerabilities per hour.

B. Static Analysis

Static analysis for Tolven eCHR generated a list of 3,765
potential vulnerabilities. Despite only scanning for security
issues, there were 1450 issues reported had no security
implications. For example, Fortify 360 reported “J2EE Bad
Practices” and “Code Correctness” issues even after
explicitly scanning only for security issues. Removing the
non-security issues reported by Fortify 360 resulted in a total
of 2,315 issues with security implications.

The first author spent about 18 hours manually
classifying these potential vulnerabilities as either true or
false positives. Speed of classification was greatly enhanced
by the Fortify 360 user interface. Lines containing potential
vulnerabilities could be viewed with a single click and
vulnerabilities in a single file could also be grouped. The
speed of classification was also influenced by the similarity
and quantity of false positives. For example, many XSS
vulnerabilities had similar structure and layout, so the
analysis involved checking for differences in a common

pattern and determining how those differences influenced the
potential vulnerability. Because of these similar issues, it
could take 5-10 seconds to evaluate a line of code in some
cases, or up to several minutes for more complicated issues.
After pruning for false positives, 50 true positive
vulnerabilities were identified giving a 98% false positive
rate. We found 50 true positives in 18 hours of testing, for a
vulnerabilities per hour measurement of 2.78. Table II breaks
down the types of vulnerabilities discovered and their false
positive rates.

TABLE IL STATIC ANALYSIS VULNERABILITIES IN TOLVEN ECHR
True False @
Type Positives Positives Fositive
Rate
SQL Injection 5 24 83%
Cross Site Scripting 28 182 87%
System Information Leak 13 441 97%
Header Manipulation 2 1 33%
File Upload Abuse 2 0 0%
Weak Cryptography or 0 111 100%
Randomness
Weak Access Control 0 225 100%
Command Injection 0 2 100%
Denial of Service 0 57 100%
J2EE Misconfiguration 0 19 100%
LDAP Issues 0 28 100%
HTTP Verb Tampering 0 2 100%
JavaScript Hijacking 0 39 100%
Log Forging 0 114 100%
Deprecated Method 0 18 100%
Misused Authentication 0 2 100%
Password Management 0 337 100%
Path Manipulation 0 151 100%
Poor Logging 0 218 100%
Privacy Violation 0 31 100%
Race Condition 0 31 100%
Resource Injection 0 9 100%
Setting Manipulation 0 21 100%
Trust Boundary Violation 0 10 100%
Unsafe Reflection 0 19 100%
Weak XML Schema 0 173 100%
Total 50 2265 98%

101

With an overall false positive rate of 98%, most of the
time spent in analyzing the potential vulnerabilities result in
a false positive. Static analysis did best in pointing out
common input validation attacks such as SQL injection, and
XSS. Despite finding these issues, the false positive rates for
detecting these vulnerabilities was still high.

Static analysis did quite poorly on several types of
vulnerabilities. One was “Weak Cryptography or
Randomness.” Every time a pseudo-random number
generator was used, static analysis labeled it as a potential
vulnerability. In Tolven eCHR, the security of the
application did not depend on these pseudo-random numbers
so every occurrence was a false positive. Similarly, every
time Tolven eCHR printed output to the console or threw an
exception, static analysis would label it as a “System
Information Leak.” In practice, none of these issues would
be displayed to the end user. Finally, a large number of false
positives were labeled as “Password Management” issues.
Simply having strings such as “password” or “******» jp
comments would trigger this alert.

OpenEMR under Fortify 360 generated a list of 5,036
potential vulnerabilities. The first author spent approximately
40 man hours going through all the potential vulnerabilities
classifying them as either a true positive or a false positive.
After pruning false positives, 1,321 true positive
vulnerabilities were identified giving a false positive rate of
74%. With static analysis we found 1,321 true positives
vulnerabilities in 40 hours. This gives us a vulnerabilities
discovered per hour metric of 32.40. Table III summarizes
our findings.

TABLE IIL STATIC ANALYSIS VULNERABILITIES IN OPENEMR
True False w
Type Positives Positives Positive

—— |77/ | Rate

SQL Injection 984 12 1%
Cross Site Scripting 171 3138 95%
System Information Leak 29 56 66%
Hidden Fields 119 15 11%

Path Manipulation 7 86 92%

Dangerous Function 7 0 0%

HTTPOnly Not Set 1 0 0%
Dangerous File Inclusion 2 110 98%
File Upload Abuse 1 8 88%
Command Injection 0 44 100%
Insecure Randomness 0 23 100%
Password Management 0 36 100%
Header Manipulation 0 17 100%
Other 0 170 100%

Total 1321 3715 74%

Static analysis was able to find 984 SQL injection
vulnerabilities in OpenEMR. OpenEMR uses a custom
method that has insufficient input validation to execute all
database queries. To determine if an invocation was
vulnerable, the first author only had to look at the method
invocation parameters. This significantly sped up the time to
evaluate SQL injection potential vulnerabilities. Static
analysis also reported 3,309 XSS issues in OpenEMR. While
171 of these issues were true positives, the vast majority of
them were not. Instead the input was actually validated in
some way and the tool failed to correctly understand this
validation.

C. Automated Penetration Testing

Running AppScan on Tolven eCHR resulted in 37
security issues after roughly eight hours of unattended
scanning. It took roughly one hour to go through the 37
potential vulnerabilities. Only 22 of these 37 issues were true
positives, giving a 40% false positive rate. Since we found
22 true positives in one hour of evaluation, the vulnerabilities
per hour metric is 22.00. Table IV provides our results.

TABLE IV. AUTOMATED PENETRATION TEST VULNERABILITIES IN
TOLVEN ECHR
Type True False P% e
~Ype Positives Positives Ty
Rate
Session Identifier Not o
Updated 0 3 100%
Cross Site Request Forgery 0 1 100%
Cacheable SSL Page 0 9 100%
Missing HttpOnly Attribute 5 0 0%
System Information Leak 17 0 0%
Email Address Pattern 0 2 100%
Total 22 15 40%

Seventeen occurrences of “System Information Leak”
and five occurrences of “Missing HTTPOnly Attribute”
vulnerabilities were true positive vulnerabilities. The only
considerable number of false positives occurred with the type
“Cacheable SSL Page.” All these issues occurred with
common JavaScript libraries like jQuery as the cacheable
resource and were subsequently deemed false positives.

AppScan found 735 potential vulnerabilities in
OpenEMR after six and a half hours scanning. The first
author spent roughly ten hours going through all of these
issues and classifying if they were either true positives or
false positives. After classification, 710 true positives
remained from the 735 potential vulnerabilities, giving a
false positive rate of 3%. The low false positive rate is
especially good considering automated penetration testing
found 710 true positive vulnerabilities We found 710 true
positive vulnerabilities in 10 hours of evaluation, giving us a
vulnerabilities per hour metric of 71.00.

Table V shows the breakdown of the type of
vulnerabilities found. Automated penetration testing did
particularly well at finding input validation vulnerabilities

102

such as SQL injection, XXS, and Error Information Leak
vulnerabilities. Of these three types of vulnerabilities, the
false positive rate was 0%.

TABLE V. AUTOMATED PENETRATION TESTING VULNERABILITIES IN
OPENEMR
False
True False S
Type Positives Positives Positive

E— — Rate
Cross Site Scripting 7 0 0%
SQL Injection 214 0%
System Information Leak 467 0 0%
Directory Traversal 18 0 0%

Email Address Patterns 0 5 100%

Missing HTTP Only o

Attribute 4 0 0%

HTML Information Leak 0 3 100%

JavaScFlpt C.ookle 0 6 100%

Manipulation

Phishing Through Frames 0 8 100%

Session ID Not Updated 0 1 100%

Unencrypted Login 0 2 100%
Total 710 25 3%

Looking at the results of the automated penetration test,
OpenEMR had an order of magnitude more true positives
than Tolven eCHR. The difference in the number of true
positives is due largely to the fact that OpenEMR fails to
adequately validate user input. This lack of input validation
leads to a majority of the issues in OpenEMR such as XSS,
SQL injection, system information leak, and directory
traversal. Both applications did poorly at output validation,
opting to rely solely on input validation. The Defense in
Depth security design principle [23] suggests that that both
input and output validation should be used. Such a design
flaw was not caught by automated penetration testing. The
inability to find such a design flaw is due in part to the
difficulty of automated penetration testing in looking beyond
the user interface to see what the application is actually
doing with the data at the code level.

D. Systematic Manual Penetration Testing

In the original systematic security test plan proposal, the
authors conducted a case study that included both OpenEMR
and Tolven eCHR. The authors test plan included 137 black
box tests. The following results are pulled directly from their
case study for comparison. The authors spent 60 man hours
evolving their test plan methodology and creating their test
plan. Between six and eight man hours were spent testing
each EHR system [21].

OpenEMR failed 63 of 137 tests. Fig. 2 breaks down the
vulnerabilities found in OpenEMR with systematic manual
penetration testing. Since the authors found 63 vulnerabilities
in 67 hours, the vulnerabilities per hour metric is 0.94. Also
note that this number maybe be low as the sixty hour number

given by the authors included time for the evolution of their
methodology.

Audit
Malicious Use of...
Malicious File

Input Validation...

10 20 30 40

B Number of Vulnerabilities

Figure 2. Vulnerabilities Found In OpenEMR with Systematic Manual
Penetration Testing

All of the input validation vulnerabilities found by
systematic manual penetration testing were implementation
bugs. These 16 implementation bugs were comprised of 15
XSS vulnerabilities and one SQL injection vulnerability. The
rest of the issues reported by the systematic manual
penetration test were design issues.

Tolven eCHR failed 37 of 137 tests. Since the authors
found 37 vulnerabilities in 67 hours, the vulnerabilities per
hour metric is 0.55. Fig. 3 breaks down the vulnerabilities
found in Tolven eCHR with the systematic manual
penetration test.

Audit
Malicious Use of...

Malicious File

Input Validation...

10 20 30 40

B Number Of Vulnerabilities

Figure 3. Vulnerabilities Found In Tolven eCHR with Systematic Manual
Penetration Testing

In Tolven eCHR there was only one input validation
vulnerability discovered with the systematic security test
plan. This input validation vulnerability was an error
information leak vulnerability. The vulnerability is therefore
an implementation bug. The other 36 vulnerabilities were all
design issues.

In both subjects, systematic manual penetration testing
found a majority of design issues, but it also found several
implementation bugs. Since both types of vulnerabilities
occur with roughly equal frequency in the wild, having a
technique that finds both is important [2].

103

VL

The first subsection discusses and analyzes the
vulnerabilities discovered. The second subsection discusses
the efficiency of the various discovery techniques, while the
third subsection talks about several vulnerabilities the
discovery techniques discussed failed to find.

ANALYSIS & DISCUSSION

A. Comparing Vulnerabilites Discovered

In this section, we provide results that aggregate the
specific vulnerabilities found with Tolven eCHR and
OpenEMR. To gain a better understanding of when to use
each types of discovery tools, we compare how effective one
discovery tool was at detecting the specific vulnerabilities
found with other tools. We compared every vulnerability
found with the other discovery techniques to every
vulnerability we found with static analysis. We chose to
compare everything to static analysis initially because it
reported the most number of true positives.

First, we compared the vulnerabilities we discovered
with static analysis to every vulnerability found with the
other discovery techniques. A breakdown vulnerabilities
found with static analysis compared to all the other discovery
techniques can be found in Table VI. The second column
represents the unique number of vulnerabilities found of each
particular class using static analysis, while the third through
fifth columns represents how many of those vulnerabilities
were discovered with each corresponding vulnerability
discovery technique.

TABLE VL VULNERABILITIES FOUND IN STATIC ANALYSIS
COMPARED TO ALL OTHER DISCOVER TECHNIQUES
Vulnerability Type Static Manual Automated Security
Analysis Testing Testing Test
Plan

SQL Injection 989 2 0 1

Cross Site Scripting 199 3 5 5

System Information 42 0 0 0

Leak

Hidden Fields 119 0 0 0

Path Manipulation 7 0 0 0

Dangerous 7 0 0 0
Function

No HTTPOnly 1 0 0 0
Attribute

Dangerous File 2 0 0 0
Inclusion

File Upload Abuse 3 0 0 0

Header 2 0 0 0

Manipulation
Total 1371 5/1371 5/1371 6/1371

The details of Table V will be discussed in each of the
following subsections.
1) Exploratory Manual Penetration Testing
A comparison in the types of vulnerabilities from both
EHR systems found with exploratory manual penetration
testing and static analysis can be found in Fig. 4.

Malicious File Upload
Session Hijacking

SQL Injection 2

B Found With Static Analysis

Found with Exploratory
Manual Penetration Testing

Figure 4. Vulnerabilities Found In Both Exploratory Manual Penetration
Testing and Static Analysis

Static analysis was able to find all the SQL injection
vulnerabilities found by exploratory manual penetration
testing. However, static analysis was able to only find three
of the XSS wvulnerabilities out of six. Other types of
vulnerabilities found with manual testing were not
discovered with static analysis. Other static analysis tools
would not likely be able to find these issues either; they
occur due to the interaction between application components
(e.g. browser, server configuration, etc.). These results
suggest that only doing static analysis and not some form of
black box testing potentially leaves many types of
vulnerabilities ~ undiscovered. Similarly, automated
penetration testing was unable to find any of the issues
discovered by static analysis.

2) Systematic Manual Penetration Testing

A comparison in the types of vulnerabilities from both
EHR systems found with systematic manual penetration
testing and static analysis can be found in Fig. 5.

Audit 66

Malicious Use of...| 14

Malicious File

Input Validation... 17

B Vulnerabilities Found With Static
Analysis
Vulnerabilities Found with Systematic
Manual Penetration Testing

Figure 5. Vulnerabilities Found In Both Systematic Manual Penetration
Testing and Static Analysis

With the systematic security test plan, Smith and
Williams [21] found 17 input validation vulnerabilities. Of
these 17 vulnerabilities, we were able to find six of these
with static analysis. The other types of vulnerabilities found
with the systematic security test plan were not found by
static analysis. All the audit issues the systematic test plan
found could not be found with static analysis. Instead, full
system tests would have to be used to ensure that adequate

104

auditing and logs were created when specific features were
used within the test subjects. These audit vulnerabilities were
all design flaws, as were all the malicious use of security
function vulnerabilities and the malicious file vulnerabilities.
The input validation vulnerabilities were implementation
bugs.

Systematic manual penetration testing also found more
vulnerabilities compared to exploratory manual penetration
testing. Systematic manual penetration testing found all of
the wvulnerabilities discovered by exploratory manual
penetration testing in OpenEMR. The systematic manual test
plan also found vulnerabilities in Tolven eCHR even though
exploratory manual penetration testing did not.

3) Automated Penetration Testing

A breakdown in vulnerabilities found with automated
penetration testing compared to static analysis can be found
in Fig. 6. With automated penetration testing we found seven
XSS vulnerabilities. Using static analysis we were only able
to find five of these seven wvulnerabilities. No other
vulnerabilities were found by both automated penetration
testing and by static analysis. Static analysis did find many
vulnerabilities of the same type, but they were not the same
vulnerabilities as automated penetration testing and often not
even in the same file. One example of this would be the SQL
injection class of vulnerabilities. Static analysis was able to
find 989 of these vulnerabilities, but they were not the same
individual vulnerabilities found with automated penetration
testing. These results suggest that using just static analysis or
automated penetration testing would be insufficient in
discovering the vast majority of vulnerabilities.

Missing HTTP Only...9
Path Manipulation 1
System Information... 484
SQL Injection 214

Cross Site Scripting 5 7

B Vulnerabilities Found with Static
Analysis
Vulnerabilities Found with Automated
Penetration Test

Figure 6. Vulnerabilities Found In Both Automated Penetration Testing

B. Vulnerabilities Per Hour

To get a more complete picture of the vulnerability
discovery techniques, we calculate time it took, on average,
to discover a vulnerability with each technique. Table VII
lists the efficiency calculations for each vulnerability
discovery technique. Since Smith and Williams [21] only
provided a range we took the average of the times for each
evaluation. Also note that the majority of the time for
systematic manual penetration testing is creating the test
plan, rather than testing the application.

TABLE VIIL EFFECIENCY OF VULNERABILITY DISCOVERY TECHNIQUES

Vulnerabilities Per Hour
Discovery Technique
Tolven eCHR OpenEMR

Exploratory Manual
Penetration Testing 0.00 0.40

Systematic Manual
Penetration Testing 0.94 0-35
Automated Penetratlon 22.00 71.00

Testing

Static Analysis 2.78 32.40

Based on our case study, the most efficient vulnerability
discovery technique is automated penetration testing. Static
analysis finds more vulnerabilities but the time it takes to
classify false positives makes it less efficient than automated
testing.

C. Other Observations

Two students conducted a security analysis of Tolven
eCHR as part of a class taught by the second author. In their
analysis, they found several vulnerabilities that we did not
find. Instead, they were discovered using a combination of
these and related tools as well as manual testing. Such a
finding suggests that individual discovery techniques can
inform other vulnerability discovery techniques. Based on
these results, using a combination of several techniques to
direct your manual testing is an effective way to find
additional vulnerabilities..

The first of these is a denial of service attack that occurs
due to improper input validation in Tolven eCHR. Fig. 7
contains an attack string that is not properly validated when a
doctor edits the personal information of a patient.

<?xml version="1.0" encoding="ISO-8859-1"7>
<IDOCTYPE foo [<!ELEMENTbfoo ANY>
<IENTITY =xxe SYSTEM "file:<?xml
encoding="1SO-8859-1"7>

<IDOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:////dev/random">]>

<foo>&xxe;</foo>,

version="1.0"

Figure 7. Input Validation Vulnerability in Tolven eCHR

Other similar input validation vulnerabilities were not
caught in manual testing or with any of the discovery tools
either. Fig. 8 illustrates an input string that injects a XSS
attack.

';alert(String. fromCharCode(88,83,83))//
\';alert(String.fromCharCode(88,83,83))/
/";alert(String.fromCharCode(88,83,83))//

\";alert(String. fromCharCode(88,83,83))//>

</SCRIPT>!--
<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>=
&

Figure 8. Input Validation Vulnerability in Tolven eCHR.

This attack worked in five different input fields in Tolven
eCHR, all of these input fields had to do with the creation of

105

new lists associated with a patient; for example, a new
allergy or medication list.

Another trend we observed was the failure to find
security vulnerabilities in Tolven eCHR with exploratory
manual penetration testing. Exploratory manual penetration
testing relies heavily on the skills of the auditor and even
skilled auditors can make mistakes and potentially miss
vulnerabilities. The task is also highly influenced by auditor
creativity as some security holes may require unintuitive
manipulations to exploit successfully. The difference in
vulnerabilities discovered with exploratory manual
penetration testing may also be related to the number of
auditors involved. A small group working together may be
better than a single auditor working alone because of the
ability to bounce ideas off various members.

VIL

The tools we selected to represent static analysis and
automated penetrating testing may not be representative of
other similar tools. We also only used one tool to measure
each discovery technique. Other tools may find different
types of vulnerabilities. The domain of healthcare, and
particularly the open source electronic medical record
applications we selected as study subjects, may not be
representative of software applications as a whole. These two
previous factors may cause our results not to generalize to
other subjects or other domains.

Additionally, humans had opportunity to introduce error
in the conducted study. Classifying vulnerabilities as either
true positives or false positives is very time consuming and
potentially error prone. The speed at which classification
occurred may have introduced error. Human error may have
caused vulnerabilities to be overlooked in the manual testing
portions of our study as well.

Efforts were taken to mitigate these possible sources of
error; however, we cannot discount their possibility of
occurrence entirely.

LIMITATIONS

VIIL

In our case study we found that systematic manual
penetration testing was more effective in finding
vulnerabilities than exploratory manual penetration testing.
We found that systematic manual penetration testing was the
most effective at finding design flaw vulnerabilities. When
compared to automated penetration testing and manual
testing techniques, static analysis found different types of
vulnerabilities. The result of this finding suggest that one
cannot rely on static analysis or automated penetration
testing because doing so would cause a large number of
vulnerabilities to go undiscovered. Static analysis found the
largest number of vulnerabilities in our study, but there were
a large number of false positives that had to be pruned in a
time consuming process. Finally, in calculating the
efficiency of each vulnerability detection technique, we
found that automated penetration testing found the most
vulnerabilities per hour, followed by static analysis,
systematic penetration testing and finally manual penetration
testing. These results do not refute the opinions of McGraw

CONCLUSION

discussed in the introduction, but they do suggest that if one
has limited time one should conduct automated penetration
testing to discover implementation bugs and systematic
manual penetration testing to discover design flaws.

IX.

There are several areas branching from our work that
could benefit from further study. The first would be to
accurately determine why different types of vulnerabilities
were discovered by one tool and not another. Even within a
particular type of vulnerability, static analysis and
penetration testing found different vulnerabilities. Future
work could look to determine why different vulnerabilities of
the same type were found with automated penetration testing
and static analysis. Another area of future work could be to
repeat our study with desktop applications rather than web
applications Many different discovery tools are available for
desktop applications that have no known web application
counterpart. One such tool, KLEE, a symbolic execution
tool, was able to find a several serious bugs in the GNU
COREUTILS package, some of which had gone unnoticed
for over 15 years [24]. Further study could examine greater
variety of discovery techniques available for desktop
applications.

FUTURE WORK

ACKNOWLEDGMENT

This work is supported by the Agency for Healthcare
Research Quality. We would like to thank Eric Helms and
Hua Chen for their work in providing additional security
vulnerabilities. Additionally, we would like to thank the
members of the Realsearch group for their invaluable
feedback on our research and this paper.

REFERENCES

[11 B. Boehm, Software Engineering Economics. USA: Prentice
Hall, 1984.

[2] G. McGraw, Software Security: Building Security In. Boston,
USA: Pearson Education, 2006.

[3] H.H. Thompson, "Application penetration testing," /[EEE
Security & Privacy, vol. 3, no. 1, p. 66, Jan.-Feb. 2005.

[4] D Allan, "Web application security: automated scanning
versus manual penetration testing," IBM Rational Software,
Somers, White Paper 2008.

[5] B. Chess and G. McGraw, "Static Analysis for Security,"
IEEFE Security and Privacy, vol. 2, no. 6, pp. 76-79,
Novemeber - December 2004.

[6] W. Pugh and D. Hovemeyer, "Finding bugs is easy," ACM
SIGPLAN Notices, vol. 39, no. 12, December 2004.

[7] N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and
W. Pugh, "Using Static Analysis to Find Bugs," /[EEE
Software, vol. 25, no. 5, pp. 22-29, Sept.-Oct 2008.

[8] T. Henzinger, R. Jhala, R. Majumdar, and G Sutre, "Software
verification with BLAST," in Proceedings of the 10th
international conference on Model checking sofiware
(SPIN'03), Springer-Verlag, Berlin, Heidelberg, 2003, pp.
235-239.

[9] The Open Web Application Security Project. (2010, August)

106

HttpOnly. [Online].
http://www.owasp.org/index.php/HttpOnly

[10] The MITRE Corporation. (2011, March) Common Weakness
Enumeration. [Online]. http://cwe.mitre.org/

[11] N. Antunes and M. Vieira, "Comparing the Effectiveness of
Penetration Testing and Static Code Analysis on the
Detection of SQL Injection Vulnerabilities in Web Services,"
in /5th IEEE Pacific Rim International Symposium on
Dependable Computing, Shanghai , 2009, p. 301.

[12] A. Doupe, M. Cova, and G. Vigna, "Why Johnny Can't
Pentest: An Analysis of Black-box Web Vulnerability
Scanners," in Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), Bonn, 2010.

[13] L. Suto, "Analyzing the Effectiveness and Coverage of Web
Application," San Francisco, White Paper 2007.

[14] L. Suto, "Analyzing the Accuracy and Time Costs of Web
Application Security Scanners," San Franscico, White paper
2010.

[15] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, "Static
Code Analysis to Detect Software Security Vulnerabilities -
Does Experience Matter?," in International Conference on
Availability, Reliability and Security (ARES '09), Fukuoka,
2009, p. 804.

[16] N. Rutar, C.B. Almazan, and J.S. Foster, "A comparison of
bug finding tools for Java," in 15th International Symposium
on Software Reliability Engineering, Saint-Malo, 2004, pp.
245-256.

[17] G. McGraw and J. Steven. (2011, January) informIT.
[Online].
http://www.informit.com/articles/article.aspx?p=1680863

[18] D. Geer and J. Harthorne, "Penetration testing: a duet," in

18th Annual Computer Security Applications Conference,
2002, Las Vegas, 2002, p. 185.

[19] S. Robinson, "The art of penetration testing," in The I[EEE
Seminar on Security of Distributed Control Systems, 2005, p.
71.

[20] OEMR.ORG. (2011, February) OpenEMR Commercial Help.
[Online].
http://www.openmedsoftware.org/wiki/OpenEMR_Commerc
ial Help

[21] B. Smith and L Williams, "Systematizing Security Test
Planning Using Functional Requirements Phrases," North
Carolina State University, Raleigh, Technical Report TR-
2011-5, 2011.

[22] B. Smith et al., "Challenges for Protecting the Privacy of
Health Information: Required Certification Can Leave
Common Vulnerabilities Undetected," in Security and
Privacy in Medical and Home-care Systems (SPIMACS 2010)
Workshop, Chicago, 2010, pp. 1-12.

[23] S. Barnum and M. Gegick. (September, 2005) Defense in
Depth. [Online]. https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/principles/347-BS1.html

[24] C. Cadar, D. Dunbar, and D. Engler, "KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs ," in USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2008) , San
Diego, 2008.

