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Context: Security vulnerabilities discovered later in the development cycle are more expensive to fix than
those discovered early. Therefore, software developers should strive to discover vulnerabilities as early as
possible. Unfortunately, the large size of code bases and lack of developer expertise can make discovering
software vulnerabilities difficult. A number of vulnerability discovery techniques are available, each with
their own strengths.
Objective: The objective of this research is to aid in the selection of vulnerability discovery techniques by
comparing the vulnerabilities detected by each and comparing their efficiencies.
Method: We conducted three case studies using three electronic health record systems to compare four
vulnerability discovery techniques: exploratory manual penetration testing, systematic manual penetra-
tion testing, automated penetration testing, and automated static analysis.
Results: In our case study, we found empirical evidence that no single technique discovered every type of
vulnerability. We discovered that the specific set of vulnerabilities identified by one tool was largely
orthogonal to that of other tools. Systematic manual penetration testing found the most design flaws,
while automated static analysis found the most implementation bugs. The most efficient discovery tech-
nique in terms of vulnerabilities discovered per hour was automated penetration testing.
Conclusion: The results show that employing a single technique for vulnerability discovery is insufficient
for finding all types of vulnerabilities. Each technique identified only a subset of the vulnerabilities,
which, for the most part were independent of each other. Our results suggest that in order to discover
the greatest variety of vulnerability types, at least systematic manual penetration testing and automated
static analysis should be performed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Results of decades of empirical research on effectiveness and
efficiency of fault and failure discovery techniques, such as unit
testing and inspections, can be used to provide evidence-based
guidance on the use of these techniques. However, similar empir-
ical results on the effectiveness and efficiency of vulnerability dis-
covery techniques, such as security-focused automated static
analysis and penetration testing are sparse. As a result, practitio-
ners lack evidence-based guidance on the use of vulnerability dis-
covery techniques.

In his book Software Security: Building Security In, Gary McGraw
draws on his experience as a security researcher and claims: ‘‘Secu-
rity problems evolve, grow, and mutate, just like species on a con-
tinent. No one technique or set of rules will ever perfectly detect all
security vulnerabilities’’ [1]. Instead, he advocates using a variety
of vulnerability discovery and prevention techniques throughout
the software development lifecycle. McGraw’s claim, however, is
based upon his experience and is not substantiated with empirical
evidence. The objective of this research is to aid in the selection of vul-
nerability discovery techniques by comparing the vulnerabilities de-
tected using each and comparing their efficiencies.

In previous work [2], the first author analyzed four vulnerability
discovery techniques on two electronic health record (EHR) sys-
tems. The vulnerability discovery techniques analyzed included:
exploratory manual penetration testing, systematic manual pene-
tration testing, automated penetration testing, and automated sta-
tic analysis. The first author used these four techniques on Tolven
Electronic Clinician Health Record (eCHR)1 and OpenEMR.2 These
two systems are currently used within the United States to store pa-
tient records. Tolven eCHR and OpenEMR are web-based systems.
This paper adds the same analysis conducted on an additional
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EHR, PatientOS,3 performed by the second author. PatientOS is a cus-
tom client/server application written in Java. The new results corrob-
orate the findings of the previous paper. Additionally, we examine
the validity of the study in greater detail and offer new insights
based on the PatientOS data. The second author was careful to follow
the exact same procedure used by the first author and collaborated
throughout the process with the first author to confirm agreement
on classifications.

We classified the vulnerabilities found by these techniques as
either implementation bugs or design flaws. Design flaws are
high-level problems associated with the architecture of the soft-
ware. An example of a design flaw is failure of authentication
where necessary. Implementation bugs are code-level software
problems, such as an instance of buffer overflow. Design flaws
and implementation bugs occur with roughly equal frequency
[1]. We then manually analyzed each discovered vulnerability to
determine if the same vulnerability could be found by multiple
vulnerability discovery techniques.

The contributions of this paper are as follows:

� A comparison of the type and number of vulnerabilities found
with exploratory manual penetration testing, systematic man-
ual penetration testing, automated penetration testing, and
automated static analysis.
� Empirical evidence indicating which discovery techniques

should be used to find implementation bugs and design flaw
types of vulnerabilities.
� An evaluation of the efficiency for each vulnerability discovery

technique based on the metric vulnerabilities discovered per
hour.
� Additional data collected with a new EHR that served to further

support previous work [2].

The rest of the paper is organized as follows; Section 2 provides
background information requiring familiarity to understand the
contents of the paper. Section 3 describes related work. Section 4
describes the case study and its methodology. Section 5 gives our
study results. Section 6 discusses our results and provides analysis.
Section 7 discusses our limitations. Section 8 summarizes our con-
clusions. Finally Section 9 talks about possible future work.
2. Background

This section describes the terminology used throughout the pa-
per and gives background information on the types of security is-
sues one may encounter when doing security analysis. The
section also discusses work related to the vulnerability discovery
techniques.

2.1. Vulnerability discovery techniques

There are many different techniques available to practitioners
for the discovery of software vulnerabilities. NIST defines a vulner-
ability to be ‘‘a flaw or weakness in system security procedures, de-
sign, implementation, or internal controls that could be exercised
(accidentally triggered or intentionally exploited) and result in a
security breach or a violation of the system’s security policy.’’ [3].
Vulnerabilities are a class of software faults specific to security in
that they can cause unintended program behavior, specifically in
the context of the security policy of the software. In this paper,
we discuss a variety of the most common vulnerability discovery
techniques. These techniques are chosen from three fundamentally
different approaches to vulnerability discovery: automated pene-
3 http://www.patientos.org/.
tration testing, manual penetration testing, and static code
analysis.

Penetration testing is one of the methods commonly used to
identify software vulnerabilities. Penetration testing is not focused
on verifying the program specification. Manual penetration test-
ing is penetration testing performed without the aid of an auto-
mated tool [4]. We make the distinction between two types of
manual penetration testing: systematic manual testing and explor-
atory manual testing. Systematic manual penetration testing is
testing that follows a predefined test plan rather than exploration.
Exploratory manual penetration testing is manual penetration
testing opportunistically, without a predefined test plan. Instead,
exploratory manual penetration testing is a security evaluation
based on the tester’s instinct and prior experience. To reduce test-
ing time and take advantage of the repetitive nature of testing,
tools have been devised to automatically perform many of the
same tasks that one does in a manual penetration test. These tools
are called automated penetration testing tools [4].

Rather than looking at the security of an application from a user
perspective, tools can also look for security issues by examining
the code directly. Automated static analysis examines software
in an abstract fashion by evaluating the code without executing
it [5–7]. This examination can be performed by evaluating the
source code, machine code, or object code of an application to ob-
tain a list of potential vulnerabilities found within the source. Sta-
tic analysis can be performed using a variety of techniques, ranging
from scanning the source text for simple patterns [5], to data flow
analysis [7], to advanced model checking [8].

Techniques for discovering software vulnerabilities are not per-
fect and they sometimes incorrectly label code as containing a vul-
nerability when no vulnerability exists. This mislabeling is called a
false positive. Therefore, developers must manually examine each
potential fault reported by these tools to determine their validity.
We call potential faults that have security implications potential
vulnerabilities.
2.2. Vulnerability types

Vulnerability types can be classified as either implementation
bugs or design flaws. In this section, we provide background on
some common vulnerability types based upon their Common
Weakness Enumeration (CWE) descriptions.4 The CWE is a commu-
nity maintained body of information regarding common software
vulnerabilities. It attempts to formalize definitions of software secu-
rity faults and provides a wealth of information on securing
software.

We provide background on eight implementation bug vulnera-
bility types found in the three projects we analyzed. Cross-Site
Scripting (XSS) (CWE-79) vulnerabilities occur when input is ta-
ken from a user and not correctly validated, allowing for malicious
code to be injected into the application and subsequently displayed
to an end user. SQL Injection (CWE-89) vulnerabilities occur when
user input is not correctly validated and the input is directly used
in a database query. Not validating the input allows a malicious
user to directly manipulate the data returned by the database to
obtain potentially sensitive information. A dangerous function
(CWE-242) vulnerability occurs when a method is used within
code that is inherently insecure or deprecated. Such methods or
functions should not be used because attackers can use common
knowledge of their weakness to exploit the application. A path
manipulation (CWE-22) vulnerability occurs when users are al-
lowed to view files or folders outside of those intended by the
4 The Common Weakness Enumeration is a community developed dictionary of
software weakness types [HYPERLINK nl ‘‘The11’’ 10].
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application. An error information leak (CWE-209) vulnerability
occurs when information or an error is displayed directly to a user.
These errors can contain sensitive information or even authentica-
tion credentials to allow attackers greater access to the application.
A failure to set the HTTPOnly attribute allows for non-http access
to browser cookies. Such a vulnerability allows client side code to
access the cookies, allowing session information or other sensitive
data to be stolen in cross site scripting or phishing attacks [9]. A
hidden field manipulation (CWE-472) vulnerability occurs when
data in hidden fields are not properly validated and the field is
implicitly trusted. Trusting this form of user input can lead to is-
sues such as SQL injection and cross site scripting, or can allow
inaccurate information to be inserted into the database. A com-
mand injection (CWE-78) vulnerability occurs when input from
the user is directly executed. This vulnerability allows malicious
users to directly execute commands on the host as a trusted user.

Our projects also contained vulnerability types that are consid-
ered design flaws [10]. A nonexistent access control (CWE-285)
vulnerability occurs when access to a particular feature is not pro-
tected, granting anyone, including malicious users access to re-
sources or functionality. A lack of auditing (CWE-778)
vulnerability occurs when a critical event is not logged or recorded.
A trust boundary violation (CWE-501) occurs when trusted and
untrusted data is mixed in a data structure. Dangerous file upload
(CWE-434) can occur when the system is not properly designed to
handle potentially malicious files. An uncontrolled resource con-
sumption (CWE-400) vulnerability exists when a system does not
impose restrictions or limits on the number of resources a user is
able to request. This can potentially lead to denial-of-service, as re-
sources can be arbitrarily tied up with little effort.
5 http://www.recovery.gov/.
3. Related work

Researchers have already examined some differences between
vulnerability discovery techniques. Autunes and Vieira compared
the effectiveness of static analysis and automated penetration test-
ing in detecting SQL injection vulnerabilities in web services [11].
They found more SQL injection vulnerabilities with static analysis
than with automated penetration testing. They also found that
both static analysis and automated penetration testing had a large
false positive rate. In our work we focus on more than just static
analysis and automated penetration testing as discovery tech-
niques. We also look at a larger variety of vulnerabilities with
which to compare techniques.

Research by Doupé et al. [12] evaluated 11 automated web-
application penetration testing tools. In their evaluation they
found that modern automated penetration testing tools had trou-
ble accessing all resources provided by an application due to weak-
nesses in crawling algorithms. Automated penetration testing tools
particularly had trouble with Flash and JavaScript. Additionally,
they found that some types of vulnerabilities such as command
injection, file inclusion and cross site scripting via Flash were diffi-
cult for automated penetration testing tools to find.

Suto [13,14] conducted two studies in which he evaluated seven
commercial web-application penetration testing tools. In his stud-
ies, he found that tools missed many vulnerabilities because they
could not properly reach all pages of the web applications. He also
found that most commercial tools had a large number of false
positives.

Baca et al. [15] found that the average developer was unable to
determine if a static analysis alert was a security issue. They found
that having experience with static analysis tools doubled the num-
ber of correct true positive classifications, while having experience
with both application security and static analysis tools tripled the
number of correct classifications over that of average developers.
Rutar et al. [16] conducted a case study on five static analysis
tools comparing their effectiveness. They found that the tools dis-
covered non-overlapping bugs that were not found by the other
tools.

McGraw and Steven [17] published an article on the pitfalls of
comparing static analysis tools. They state that two tools will per-
form differently on code bases of the same language because of
coding style and internal rules used by the tools. They also claim
that tool operators and configuration can greatly influence vulner-
ability discovery.

Much work in the past pertaining to manual penetration testing
has focused on the lack of scientific process in penetration testing.
Several researchers have concluded that manual penetration test-
ing is more of an art than a science [18,19]. As a result, the pene-
tration tester’s creativity and skill greatly influence the results of
a successful manual penetration test.

4. Case study

This section describes the subjects chosen for our case studies
as well as our methodology.

4.1. Subject selection

Due to recent legislative requirements5 in the United States,
development and adoption of EHR systems has suddenly taken off.
To have our case studies generalize to large, real world systems,
two open-source web-applications as well as one open-source cli-
ent/server application were chosen to be our subjects. The two
browser-based systems we studied were Tolven eCHR and Ope-
nEMR. The client/server application was PatientOS.

Tolven eCHR is an open-source browser-based EHR system.
The project has 12 contributing developers, and commercial sup-
port is available from Tolven, Inc. OpenEMR is also an open-
source web-based EHR system. The project has a community of
17 contributing developers and at least 23 organizations provid-
ing commercial support within the United States [20]. PatientOS
is an open-source client/server EHR. Its development is guided
primarily by a single developer, but commercial support is also
available. Some additional characteristics of each of the systems
are included in Table 1.

4.2. Case study methodology

We first collected the vulnerabilities found by each of the four
vulnerability discovery techniques. We then classified each vulner-
ability as either a true or false positive. The time spent by each
author during the classification phase was recorded using Gnome
Time Tracker, a powerful utility for project time tracking. Finally,
we analyzed whether a vulnerability was found by more than
one technique. The next five subsections examine each of these
steps in greater detail.

4.2.1. Exploratory manual penetration testing
To keep other discovery techniques from biasing our explor-

atory manual penetration testing, we conducted exploratory man-
ual penetration testing prior to conducting vulnerability discovery
with other techniques. To perform exploratory manual penetration
testing, we manually attempted to exploit various components of
the test subjects opportunistically, in an ad hoc manner. The
exploratory manual penetration testing was conducted by authen-
ticating with the target application and manually navigating
through each page trying various attacks. We used supplemental

http://www.recovery.gov/


Table 1
Characteristics of Tolven eCHR and OpenEMR (adapted from [2]).

Tolven eCHR OpenEMR PatientOS

Language Java PHP Java
Version evaluated RC1 (5/28/2010) 3.1.0 (8/29/2009) 0.99 (1/17/2010)
Lines of code (counted by CLOC1.08) 466,538 277,702 487,437
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tools such as web browsers, JavaScript debuggers (e.g. Firebug6)
and http proxies (e.g. WebScarab7) for viewing raw http requests.
BackTrack 58 and its large collection of tools specifically made for
penetration testing was used when attempting to exploit PatientOS.
In particular, WireShark9 proved to be very useful for analyzing traf-
fic sent between the client and the server sides of the application.

4.2.2. Static analysis
To perform static analysis, we used Fortify 360 v.2.6.10 Fortify

360 supports analysis of a variety of languages including both PHP
and Java. To evaluate these two languages we chose the options
‘‘Show me all issues that have security implications’’ and ‘‘No, I don’t
want to see code quality issues’’. Fortify 360 generated a list of po-
tential vulnerabilities when scanning was complete.

4.2.3. Automated penetration testing
To conduct automated penetration testing, we used IBM Ra-

tional AppScan 8.0.11 Rational AppScan conducts a black box secu-
rity evaluation of a website by crawling a web application and
attempting to perform a variety of attacks. To use AppScan, we pro-
vided authentication credentials to the systems so that the tool
could login to both of our browser-based test subjects. We left the
default scanning options selected for our automated penetration
tests. AppScan generated a list of potential vulnerabilities when
scanning was complete.

The ease with which the DOM-elements of a browser-based
interface can be manipulated is unmatched by traditional client-
side software. Differences in GUI libraries and operating systems
complicate matters when dealing with custom client software. Ba-
sic tools exist for very specific analyses, but none of them offer the
same end-to-end analysis offered by the web-application tools,
particularly AppScan. Thus, PatientOS does not include results for
automated penetration testing.

4.2.4. Systematic manual penetration testing
One vulnerability discovery technique, proposed by Smith and

Williams [21], suggests using the functional requirements specifi-
cations of the software system to systematically generate security
tests to surface security vulnerabilities. The authors create these
tests by breaking the systems functional requirements statements
into distinct phrase types such ‘‘Action Phrase’’ and ‘‘Object
Phrase.’’ Using these two phrase types, the authors then propose
a systematic method of generating security tests using common
patterns. Since the authors have provided a detailed test plan
[21] and have run their test plans against our subjects, we will
use the results they obtained for our study.

4.2.5. False positive classification
Automated security tools are far from perfect. Both static anal-

ysis and automated penetration testing tools generate long lists of
potential vulnerabilities that must be manually classified as either
6 http://getfirebug.com/.
7 http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.
8 http://www.backtrack-linux.org/.
9 http://www.wireshark.org/.

10 https://www.fortify.com/products/fortify360/index.html.
11 http://www-01.ibm.com/software/awdtools/appscan/.
true or false positives. To perform this classification, we manually
examined each individual vulnerability. For automated penetration
testing, false positive classification was performed by looking at
the raw HTTP requests generated and confirming if the attempted
exploit was actually visible in the raw output or accepted as
trusted input. For static analysis, we examined the line of code
classified as vulnerable and also examined related methods. For
both tools, sometimes we had to attempt to manually recreate
the attack through the application to confirm whether the poten-
tial vulnerability was a true positive.

4.2.6. Comparison of vulnerabilities found
Comparing the results of each technique on each subject al-

lowed us to make conclusions regarding their effectiveness in par-
ticular situations. By comparing one technique against another,
specific comments on strengths and weaknesses could be made,
as well as conclusions regarding the best approach to security test-
ing. Because static analysis discovered the most vulnerabilities, it
was used as the benchmark to be compared with all other tech-
niques. We looked at the number of vulnerabilities found by one
technique against another, but we also looked at the specific vul-
nerabilities found by each technique to see if it was discovered
by more than one technique.
5. Results

In this section we present the results of our case study. We in-
clude analyses of the results of applying the four vulnerability dis-
covery techniques against the three EHR systems. We include false
positive rates with the automated tools. Finally, a metric intended
to reflect overall efficiency, vulnerabilities discovered per hour, is
discussed for each. This metric only takes the time spent by the
authors reviewing potential vulnerabilities into account; it does
not include time spent setting up or running the tools.

5.1. Exploratory manual penetration testing

For Tolven eCHR, the first author spent approximately 15 man-
hours performing exploratory manual penetration testing. After
15 h of testing, we were unable to find any security issues in Tol-
ven eCHR. Since we discovered no vulnerabilities in Tolven eCHR
with exploratory manual testing, the vulnerabilities per hour met-
ric is 0.

In prior work [22], we conducted an extensive security evalua-
tion of OpenEMR with a team of six researchers and 30 man-hours
of evaluation. Because discovery of vulnerabilities can signal the
penetration tester to other likely vulnerabilities, we continued
our evaluation of OpenEMR for a longer period than Tolven eCHR.
During our manual testing we were able to find 12 security vulner-
abilities throughout the OpenEMR application. Fig. 1 provides a
breakdown of the types of vulnerabilities discovered.

Since each vulnerability discovered was exploited, they are all
considered true positives. We classified all of the bugs found with
exploratory manual penetration testing to be implementation bugs
with the exception of the malicious file upload, which was a design
flaw. All of the vulnerabilities found with exploratory manual pen-
etration testing were caused by lack of input validation. Since

http://getfirebug.com/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.backtrack-linux.org/
http://www.wireshark.org/
https://www.fortify.com/products/fortify360/index.html
http://www-01.ibm.com/software/awdtools/appscan/


Fig. 1. Vulnerabilities found in OpenEMR with exploratory manual penetration
testing (as reported in [2]).

Fig. 3. Vulnerabilities found in Tolven eCHR with systematic manual penetration
testing (as reported in [2]).
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exploratory manual penetration testing found 12 vulnerabilities in
30 h, the efficiency metric is 0.40 vulnerabilities per hour.

In the exploratory penetration testing effort against PatientOS,
the second author spent 14 h examining the client-side of Patien-
tOS. The only vulnerability found was the transfer of unencrypted
traffic between client and server that contained sensitive data. Spe-
cifically, when a nurse created a new office visit, a JavaBean con-
taining the patient’s name, SSN, insurance policy information,
diagnoses, drug allergies, etc. was transmitted in plain-text to the
server. If the server was physically separated from the client ma-
chine (as it likely would be), then this sensitive data would likely
have to cross untrusted networks, from which anybody with a
packet sniffer could collect it. In a man-in-the-middle attack, a
malicious user on the client-side network could potentially alter
the data before forwarding it to the server via ARP-cache poisoning
or a similar technique. The single vulnerability found in the 14 h
yields a vulnerabilities discovered per hour value of 0.07.
5.2. Systematic manual penetration testing

In the original systematic security test plan proposal [21], the
authors conducted a case study that included all of our subjects.
The authors’ test plan included 137 black box tests. The following
results are pulled directly from their case study for comparison.
The authors spent 60 man hours evolving their test plan method-
ology and creating their test plan. Between six and eight man hours
were spent testing each EHR system [21].

OpenEMR failed 63 of 137 tests. Fig. 2 breaks down the vulner-
abilities found in OpenEMR with systematic manual penetration
testing. Since the authors found 63 vulnerabilities in 67 h, the vul-
nerabilities per hour metric is 0.94. Also note that this number
maybe be low as the 60 h number given by the authors included
time for the evolution of their methodology.

All of the input validation vulnerabilities found by systematic
manual penetration testing were implementation bugs. These 16
implementation bugs were comprised of 15 XSS vulnerabilities
and one SQL injection vulnerability. The rest of the issues reported
by the systematic manual penetration test were design issues.

Tolven eCHR failed 37 of 137 tests. Since the authors found 37
vulnerabilities in 67 h, the vulnerabilities per hour metric is 0.55.
Fig. 3 breaks down the vulnerabilities found in Tolven eCHR with
the systematic manual penetration test.
Fig. 2. Vulnerabilities found in OpenEMR with systematic manual penetration
testing (as reported in [2]).
In Tolven eCHR there was only one input validation vulnerabil-
ity discovered with the systematic security test plan. This input
validation vulnerability was an error information leak vulnerabil-
ity. The vulnerability is therefore an implementation bug. The
other 36 vulnerabilities were all design issues.

PatientOS also failed 37 of the 137 tests. This gives it the same
vulnerability discovery rate as Tolven: 0.55. Fig. 4 shows the vul-
nerabilities found broken up by categories.

Almost all of the vulnerabilities found with systematic manual
penetration testing in PatientOS were audit related. PatientOS
failed to properly log critical events in the system. PatientOS also
failed to maintain good password policy, especially in regards to
the admin account. All of the vulnerabilities found were classified
as design flaws.

In all subjects, systematic manual penetration testing found
mostly design flaws, but it also found several implementation
bugs. Since both types of vulnerabilities occur with roughly equal
frequency, having a technique that finds both could be useful [1].
Ultimately, however, the use of just one technique will not be
enough.

5.3. Automated penetration testing

Running AppScan on Tolven eCHR resulted in 37 security issues
after roughly 8 h of unattended scanning. Approximately 1 h was
spent going through the 37 potential vulnerabilities. Only 22 of
these 37 issues were true positives, giving a 40% false positive rate.
Since we found 22 true positives in 1 h of evaluation, the vulnera-
bilities per hour metric is 22.00. Table 2 provides our results.

Seventeen occurrences of ‘‘System Information Leak’’ and five
occurrences of ‘‘Missing HTTPOnly Attribute’’ vulnerabilities were
true positive vulnerabilities. The only considerable number of false
positives occurred with the class ‘‘Cacheable SSL Page.’’ All these is-
sues occurred with common JavaScript libraries like jQuery as the
cacheable resource and were subsequently deemed false positives.

AppScan found 735 potential vulnerabilities in OpenEMR after
six and a half hours scanning. We spent roughly 10 h going through
all of these issues and classifying them as either true or false pos-
itives. After classification, 710 true positives remained from the
735 potential vulnerabilities, giving a false positive rate of 3%.
We found 710 true positive vulnerabilities in 10 h of evaluation,
giving us a vulnerabilities per hour metric of 71.00.
Fig. 4. Vulnerabilities found in PatientOS with systematic manual penetration
testing (as reported in [2]).



Table 2
automated penetration test vulnerabilities in Tolven eCHR (as reported in [2]).

Type True
positives

False
positives

False positive rate
(%)

Session identifier not
updated

0 3 100

Cross site request forgery 0 1 100
Cacheable SSL page 0 9 100
Missing HttpOnly

attribute
5 0 0

System information leak 17 0 0
Email address pattern 0 2 100
Total 22 15 40

Table 3
Automated penetration testing vulnerabilities in OpenEMR (as reported in [2]).

Type True
positives

False
positives

False positive rate
(%)

Cross site scripting 7 0 0
SQL injection 214 0 0
System information leak 467 0 0
Directory traversal 18 0 0
Email address patterns 0 5 100
Missing HTTP only

attribute
4 0 0

HTML information leak 0 3 100
JavaScript cookie

manipulation
0 6 100

Phishing through frames 0 8 100
Session ID not updated 0 1 100
Unencrypted login 0 2 100
Total 710 25 3

Table 4
Static analysis vulnerabilities in Tolven eCHR (as reported in [2]).

Type True
positives

False
positives

False positive
rate (%)

SQL injection 5 24 83
Cross site scripting 28 182 87
System information leak 13 441 97
Header manipulation 2 1 33
File upload abuse 2 0 0
Weak cryptography or

randomness
0 111 100

Weak access control 0 225 100
Command injection 0 2 100
Denial of service 0 57 100
J2EE misconfiguration 0 19 100
LDAP issues 0 28 100
HTTP verb tampering 0 2 100
JavaScript hijacking 0 39 100
Log forging 0 114 100
Deprecated method 0 18 100
Misused authentication 0 2 100
Password management 0 337 100
Path manipulation 0 151 100
Poor logging 0 218 100
Privacy violation 0 31 100
Race condition 0 31 100
Resource injection 0 9 100
Setting manipulation 0 21 100
Trust boundary violation 0 10 100
Unsafe reflection 0 19 100
Weak XML schema 0 173 100
Total 50 2265 98
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Table 3 shows the breakdown of the type of vulnerabilities
found. Automated penetration testing did particularly well at find-
ing input validation vulnerabilities such as SQL injection, XSS, and
Error Information Leak vulnerabilities. Of these three types of vul-
nerabilities, the false positive rate was 0%.

We were unable to run AppScan against the PatientOS client be-
cause PatientOS was not a web-application. The DOM elements of a
web-application user interface can easily be parsed and modified,
unlike the user interface of a custom client. Many different GUI li-
braries exist for custom clients, resulting in no single interface with
which to access or manipulate the components of the user inter-
face across applications.

Looking at the results of the automated penetration test, Ope-
nEMR had an order of magnitude more true positives than Tolven
eCHR. The difference in the number of true positives is due largely
to the fact that OpenEMR fails to adequately validate user input.
This lack of input validation leads to the majority of the issues in
OpenEMR such as XSS, SQL injection, system information leak,
and directory traversal. Both web-applications did poorly at output
validation, opting to rely solely on input validation. The Defense in
Depth security design principle [23] suggests that both input and
output validation should be used. Such a design flaw was not
caught by automated penetration testing. The inability to find such
a design flaw is due in part to the difficulty of automated penetra-
tion testing in looking beyond the user interface to see what the
application is actually doing with the data.

5.4. Automated static analysis

Automated static analysis for Tolven eCHR generated a list of
3765 potential vulnerabilities. Despite only scanning for security
issues, there were 1450 issues reported had no security implica-
tions. For example, Fortify 360 reported ‘‘J2EE Bad Practices’’ and
‘‘Code Correctness’’ issues even after explicitly scanning only for
security issues. Removing the non-security issues reported by For-
tify 360 resulted in a total of 2315 potential vulnerabilties.

We spent about 18 h manually classifying these potential vul-
nerabilities as either true or false positives. Speed of classification
was greatly enhanced by the Fortify 360 user interface. Lines con-
taining potential vulnerabilities could be viewed with a single click
and vulnerabilities in a single file could also be grouped. The speed
of classification was also influenced by the similarity and quantity
of false positives. For example, many XSS vulnerabilities had simi-
lar structure and layout, so the analysis involved checking for dif-
ferences in a common pattern and determining how those
differences influenced the potential vulnerability. Because of these
similar issues, it could take 5–10 s to evaluate a line of code in
some cases, or up to several minutes for more complicated issues.
After pruning for false positives, 50 true positive vulnerabilities
were identified giving a 98% false positive rate. We found 50 true
positives in 18 h of testing, for a vulnerabilities per hour measure-
ment of 2.78. Table 4 breaks down the vulnerability types discov-
ered and their false positive rates.

Static analysis did quite poorly on several types of vulnerabili-
ties. One was ‘‘Weak Cryptography or Randomness.’’ Every time a
pseudo-random number generator was used, static analysis la-
beled it as a potential vulnerability. In Tolven eCHR, the security
of the application did not depend on these pseudo-random num-
bers so every occurrence was a false positive. Similarly, every time
Tolven eCHR printed output to the console or threw an exception,
static analysis would label it as a ‘‘System Information Leak.’’ In
practice, none of these issues would be displayed to the end user.
Finally, a large number of false positives were labeled as ‘‘Password
Management’’ issues. Simply having the strings such as ‘‘pass-
word’’ or ‘‘������’’ in comments would trigger this alert.

With an overall false positive rate of 98%, most of the time spent
in analyzing the potential vulnerabilities result in a false positive.
Static analysis did best in pointing out common input validation
attacks such as SQL injection, and XSS. Despite finding these issues,
the false positive rates for detecting these vulnerabilities was still
high.



Table 5
Static analysis vulnerabilities in OpenEMR (as reported in [2]).

Type True
positives

False
positives

False positive rate
(%)

SQL injection 984 12 1
Cross site scripting 171 3138 95
System information

leak
29 56 66

Hidden fields 119 15 11
Path manipulation 7 86 92
Dangerous function 7 0 0
HTTPOnly not set 1 0 0
Dangerous file

inclusion
2 110 98

File upload abuse 1 8 88
Command injection 0 44 100
Insecure randomness 0 23 100
Password

management
0 36 100

Header manipulation 0 17 100
Other 0 170 100
Total 1321 3715 74

Table 6
Static analysis vulnerabilities in PatientOS.

Type True
positives

False
positives

False positive rate
(%)

Unsafe mobile code 46 29 39
Password management 0 330 100
Privacy violation 33 255 89
Redundant null check 14 4 22
Denial of service 0 126 100
Path manipulation 11 139 93
Unsafe JNI 2 0 0
Weak cryptographic hash 0 0 100
Missing check for null

parameter
1 0 0

Missing XML validation 1 0 0
Access control 0 1 100
Command injection 0 3 100
Dead code 0 235 100
Insecure randomness 0 15 100
Log forging 4 3 43
Object model violation 0 2 100
Obsolete 0 1 100
Misused authentication 0 3 100
Poor logging practice 18 14 44
Race condition 0 5 100
Resource injection 0 14 100
Setting manipulation 0 3 100
SQL injection 0 23 100
System information leak 0 23 100
Unchecked return value 0 16 100
Unreleased resource:

streams
15 107 88

Unsafe reflection 0 4 100
Weak XML schema 0 288 100
Total 145 1644 92
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Fortify 360 generated a list of 5036 potential vulnerabilities
when used to analyze OpenEMR. We spent approximately 40
man hours going through all the potential vulnerabilities classify-
ing them as either a true positive or a false positive. After pruning
false positives, 1321 true positive vulnerabilities were identified
giving a false positive rate of 74%. With static analysis we found
1321 true positives vulnerabilities in 40 h. This gives us a vulnera-
bilities discovered per hour metric of 32.40. Table 5 summarizes
the vulnerability types discovered and their false positive rates.

Static analysis was able to find 984 SQL injection vulnerabilities
in OpenEMR. OpenEMR uses a custom method that has insufficient
input validation to execute all database queries. To determine if an
invocation was vulnerable, we only had to look at the method
invocation parameters. This significantly sped up the time to eval-
uate SQL injection potential vulnerabilities. Static analysis also re-
ported 3309 XSS issues in OpenEMR. While 171 of these issues
were true positives, the vast majority of them were not. The tool
failed to correctly understand that input validation prevented the
XSS.

Fortify 360 reported 12,333 issues in total after scanning
PatientOS. The majority of them were unrelated to security and
could be removed. For example, 10,029 were broad or narrow
error-handling blocks; after verifying that no security-critical
functions relied on catching errors, the entire group was able to
be dismissed. Filtering for only the security-related potential vul-
nerabilities left 1643 issues to be analyzed. We spent 13 h classify-
ing the results, leaving 145 true positives. This gives Fortify a 92%
false positive rate against PatientOS.

Table 6 contains the vulnerability types and false positive rate
of the issues discovered by Fortify 360 in PatientOS.

Of the 145 issues that turned out to be true positives, most were
related to JRE and client/server JNI injection vulnerabilities. Also, a
number of denial-of-service possibilities were highlighted by For-
tify. 145 true positives in 13 h gives a vulnerabilities discovered
per hour metric of 11.15.
6. Analysis and discussion

The first subsection discusses and analyzes the vulnerabilities
discovered. The second subsection section discusses the efficiency
of the various discovery techniques, while the third subsection
talks about several vulnerabilities the discovery techniques dis-
cussed failed to find.
6.1. Comparing vulnerabilities discovered

In this section, we provide results that aggregate the specific
vulnerabilities discovered in the EHR systems. To gain a better
understanding of when to use each type of discovery tool, we com-
pare how effective one discovery tool was at detecting the specific
vulnerabilities found with other tools. We compared each vulner-
ability found with the other discovery techniques to every vulner-
ability we found with static analysis. We chose to compare
everything to static analysis because it reported the greatest num-
ber of true positives.

First, we compared the vulnerabilities we discovered with static
analysis to every vulnerability found with the other discovery tech-
niques. A breakdown vulnerabilities found with static analysis
compared to all the other discovery techniques can be found in
Table 7. The second column represents the unique number of vul-
nerabilities found of each particular class using static analysis,
while the third through fifth columns represents how many of
those vulnerabilities were discovered with each corresponding
vulnerability discovery technique.

The details of Table 7 will be discussed in each of the following
subsections.

6.1.1. Exploratory manual penetration testing
A comparison in the types of vulnerabilities from the EHR sys-

tems found with exploratory manual penetration testing and static
analysis can be found in Fig. 5.

Static analysis was able to find all the SQL injection vulnerabil-
ities found by exploratory manual penetration testing. However,
static analysis was able to only find three of the XSS vulnerabilities
out of six. Other types of vulnerabilities found with manual testing
were not discovered with static analysis. Other static analysis tools
would not likely be able to find these issues either; they occur due



Table 7
Vulnerabilities found in static analysis compared to all other discover techniques (adapted from [2]).

Vulnerability type Static analysis Manual testing Systematic test plans Automated testing

SQL injection 989 2 1 0
Cross site scripting 199 3 5 5
System information leak 42 0 0 0
Hidden fields 119 0 0 0
Path manipulation 18 0 0 0
Dangerous function 7 0 0 0
No HTTPOnly attribute 1 0 0 0
Dangerous file inclusion 2 0 0 0
File upload abuse 3 0 0 0
Header manipulation 2 0 0 0
Password management 55 0 0 0
Privacy violation 33 1 0 0
Redundant null check 14 0 0 0
Unsafe JNI 2 0 0 0
Total 1486 6/1486 6/1486 5/1486

Fig. 5. Vulnerabilities found in both exploratory manual penetration testing and
static analysis (as reported in [2]).

Fig. 6. Vulnerabilities found in both systematic manual penetration testing and
static analysis (as reported in [2]).
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to the interaction between application components (e.g. browser,
server configuration, etc.). These results suggest that only doing
static analysis and not some form of black box testing potentially
leaves many types of vulnerabilities undiscovered. Similarly, auto-
mated penetration testing was unable to find any of the issues dis-
covered by static analysis. Fortify found a number of privacy
violations in PatientOS, but none of them were related to the one
found during the exploratory manual penetration test.

Static analysis can only find vulnerabilities that exist in the
source code (errors of commission), not code that is missing (errors
of omission). Other techniques are better suited to finding design
flaws, such as errors of omission.

6.1.2. Systematic manual penetration testing
A comparison in the types of vulnerabilities from the EHR sys-

tems found with systematic manual penetration testing and static
analysis can be found in Fig. 6.
With the systematic security test plan, Smith and Williams [21]
found 17 input validation vulnerabilities. Of these 17 vulnerabili-
ties, we were able to find six of these with static analysis. The other
types of vulnerabilities found with the systematic security test
plan were not found by static analysis. All of the audit issues that
the systematic test plan found could not be found with static anal-
ysis. Instead, full system tests would have to be used to ensure that
adequate auditing and logs were created when specific features
were used within the test subjects. These audit vulnerabilities
were all design flaws, as were all the malicious use of security
function vulnerabilities and the malicious file vulnerabilities. The
input validation vulnerabilities were implementation bugs.

Systematic manual penetration testing also found more vulner-
abilities than exploratory manual penetration testing. Systematic
manual penetration testing found all of the vulnerabilities discov-
ered by exploratory manual penetration testing in OpenEMR. The
systematic manual test plan also found vulnerabilities in Tolven
eCHR even though exploratory manual penetration testing did
not. None of the tools or the systematic manual test plans found
the privacy violation in PatientOS data transmittal.
6.1.3. Automated penetration testing
A breakdown in vulnerabilities found with automated penetra-

tion testing compared to static analysis can be found in Fig. 7. With
automated penetration testing, we discovered seven XSS vulnera-
bilities. Using static analysis we were only able to find five of these
seven vulnerabilities. No other vulnerabilities were found by both
automated penetration testing and by static analysis. Static analy-
sis did find many vulnerabilities of the same type, but they were
not the same vulnerabilities as automated penetration testing
and often not even in the same file. One example of this would
be the SQL injection class of vulnerabilities. Static analysis was able
to find 989 of these vulnerabilities, but they were not the same
individual vulnerabilities found with automated penetration test-
ing. These results suggest that using just static analysis or auto-
mated penetration testing would be insufficient in discovering
the vast majority of vulnerabilities.
6.2. Vulnerabilities per hour

To understand the efficiency of the vulnerability discovery tech-
niques, we calculated the time it took, on average, to discover a
vulnerability with each technique. Where tools are involved, we
only account for the time spent evaluating the results of the tool.
The installation time of a tool should not reflect on its ability to
detect vulnerabilities. Additionally, the cost of computer time is



Fig. 7. Vulnerabilities found in both automated penetration testing (as reported in
[2]).

Table 8
Efficiency of vulnerability discovery techniques (adapted from [2]).

Discovery technique Vulnerabilities per hour

Tolven eCHR OpenEMR PatientOS

Exploratory manual
penetration testing

0.00 0.40 0.07

Systematic manual
penetration testing

0.94 0.55 0.55

Automated penetration
testing

22.00 71.00 N/A

Static analysis 2.78 32.40 11.15
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negligible compared to that of a paid man-hour, so we chose not to
include the time spent running a tool, only evaluating its output.

Table 8 lists the efficiency calculations for each vulnerability
discovery technique. Since Smith and Williams [21] only provided
a range we took the average of the times for each evaluation. Also it
should be noted that the majority of the time spent for systematic
manual penetration testing is spent on the creation of the test plan,
rather than the actual testing of the application.

Based on our case study, the most efficient vulnerability discov-
ery technique is automated penetration testing. Static analysis
finds more vulnerabilities but the time it takes to classify false pos-
itives makes it less efficient than automated testing.
12 http://www.fsf.org/.
7. Limitations

Runeson and Höst outline four primary threats to validity that
can help to determine the extent to which the results of a case
study might be influenced by researcher bias [24]. Construct
validity pertains to whether or not the measured results really
serve to describe the constructs that they are intended to describe.
We believe that our vulnerability data is perfectly descriptive of
what we intended. Internal validity is threatened when chains
of causality are hypothesized (e.g. A causes B), but the possibility
of invisible factors (e.g. C might also affect B) is not addressed.
Our results are not concerned with causality, so this is not a con-
cern for this study. External validity describes the validity of any
generalizations made from the data. All of our systems were
open-source EHRs, but we do not believe this prevents us from
generalizing our results. Reliability is concerned with how depen-
dent the data is on individual researchers. All of the potential vul-
nerabilities were discovered by tools, but their classification was
performed by two separate authors.

When comparing vulnerability discovery techniques, the logical
construct to use is number of vulnerabilities. We distinguish be-
tween false positives and real vulnerabilities to account for the
inability of automated tools to actually determine whether a vul-
nerability is exploitable. We believe that our vulnerabilities per
hour metric accurately describes the number of exploitable vulner-
abilities discovered per man-hour. Hence, we dismiss construct
validity as a significant concern.
Having taken a top-down approach to comparing different vul-
nerability discovery techniques, we were not concerned with any
form of causality. In a bottom-up approach, however, exploring
why different techniques discover different vulnerabilities, internal
validity would be a serious concern.

Our case study subjects were chosen to represent the popula-
tion of developed code bases. Our choices were limited to three
open-source EHR systems. This is a threat to external validity,
but we believe that EHR systems generalize to the intended popu-
lation. The systems we analyzed were written in a variety of widely
used languages not specific to health record systems.

The open-source component present in each of our cases poses
the question: can open-source software be generalized to the same
superset of code-bases as corporately developed software, or is it a
different breed of code-base entirely? The open-source community
has proven many times that it is capable of producing quality and
secure software since the first days of the Free Software Founda-
tion.12 The three EHRs analyzed are in use all over the United States
and corporate entities exist solely for the purpose of providing com-
mercial support for them.

However, the tools we selected to represent automated static
analysis and automated penetration testing may not be represen-
tative of the other tools available which perform similar services.
Also, the results of two tools performing the same technique may
differ on the same code-base. Our case study only utilized a single
tool to represent each vulnerability discovery technique. Addition-
ally, the architectural differences between the web-applications
and the custom client prevented us from being able to run AppScan
on all of our subjects.

In any case study, reliability of data collection is always a signif-
icant threat to the validity of the subject. There is the potential for
misclassification of a true/false positive when analyzing the results
of automated static analysis. The sheer number of potential vulner-
abilities identified by Fortify360 lessened the statistical impact of
any single misclassification for the purposes of this study. Addi-
tionally, human error could significantly have affected the reliabil-
ity of the results. In an effort to minimize these concerns, the first
and second authors collaborated to verify agreement on samples of
potential vulnerabilities.

Finally, the authors performing the manual exploratory pene-
tration testing were not professionals. The authors were experi-
enced in application security; however, a team of professional
penetration testers likely would have uncovered more of the vul-
nerabilities that were missed in the manual exploratory penetra-
tion tests of our case study.
8. Conclusion

In our case study we found that systematic manual penetration
testing was more effective in finding vulnerabilities than explor-
atory manual penetration testing. We found that systematic man-
ual penetration testing was the most effective at finding design
flaw vulnerabilities. When compared to automated and manual
penetration testing techniques, static analysis found different
types of and more vulnerabilities. This result suggests that one
cannot rely on static analysis or automated penetration testing be-
cause doing so would leave a large number of vulnerabilities undis-
covered. Static analysis found the largest number of vulnerabilities
in our study, but there were a large number of false positives that
had to be pruned in a time consuming process. Finally, in calculat-
ing the efficiency of each vulnerability detection technique, we
found that automated penetration testing found the most vulnera-
bilities per hour, followed by static analysis, systematic penetra-

http://www.fsf.org/
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tion testing and finally manual penetration testing. These results
do not refute the opinions of McGraw discussed in the introduc-
tion. However, the results do suggest that if development teams
have limited time, they should conduct automated penetration
testing to discover implementation bugs and systematic manual
penetration testing to discover design flaws. All identifiable vul-
nerabilities should be removed from a system, regardless of their
nature; based on this we conclude that no one technique is enough
for the identification of software vulnerabilities.

9. Future work

There are several areas branching from our work that could
benefit from further study. This paper approached the question
of vulnerability discovery with a top-down approach, ultimately
allowing us to draw comparisons between the techniques. A bot-
tom-up approach could reveal more about the ability of techniques
to detect the exact same vulnerabilities. Additionally, it would be
beneficial to know why different types of vulnerabilities were dis-
covered by one technique and not another. Even within a particular
type of vulnerability (e.g. XSS), static analysis and penetration test-
ing found different vulnerabilities. Future work could look to deter-
mine why different vulnerabilities of the same type were found
with automated penetration testing and static analysis. Further
study could also examine a greater variety of discovery techniques
available for desktop applications.

In addition to researching new ideas and directions, the threats
to the validity of the original research could be reduced by per-
forming a systematic review of the decisions made against a sam-
ple of potential vulnerabilities. Additionally, the original
developers of the systems could be contacted to help verify the
true positives identified.
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